

1

Networked Climate Monitor

 By

Daniel Hearn - UP801685

Project unit: (PJE40)
Supervisor: Rinat Khusainov

May 2020

2

Abstract
As the Internet of Things (IoT) has grown, the number of commercial products using IoT
has also grown. This includes the personal weather stations which have started embracing
IoT through web-based interfaces, mobile applications, and cloud-based storage. While
many commercial weather stations exist, these products suffer from a variety of limitations
that affect their suitability in many situations. These limitations include the high costs,
limited modularity affecting the number of climate areas that can be tracked at once, and
the lack of modularity in the types of climate data that can be tracked. Due to these
limitations, a solution was designed that provides node modularity and sensor modularity
along with similar features to the commercial products such as web-based interfaces,
historical data visualisation, and climate trends. The solution also aims to be more
affordable with a low initial cost that can be later expanded with additional nodes. From
this, a personal weather station was produced to fulfil the requirements of such a solution.
This system provides modular nodes that measure the temperature, humidity, and
atmospheric pressure of their surrounding environment, a base station to store and
provide access to a website that acts as a viewing and management platform for the
climate data and sensors. The nodes are battery-powered, waterproof, and use low-power
radio communication. The solution was implemented with two individual sensor nodes and
a base station and was then tested to evaluate its effectiveness against the problem and
the limitations of the existing solutions. The evaluation provided mostly successful results
in achieving its purpose with some issues with affordability, node communication range,
and future expandability. Evaluation of the future work for this project and in the wider
research area has been provided.

Word Count: 22536

3

Tables of Contents
1. Introduction 12

2. Literature Review 14

2.1 Background 14

2.1.1 IoT & Smart Homes 14

2.1.2 Weather Stations 14

2.2 Related Work 15

2.2.1 Weather Stations 15

2.2.2 Home Automation 16

3. Methodologies and Project management 17

3.1 Methodology 17

3.1.1 Overall Methodological Approach 17

3.1.2 Research and Requirements Methodology 17

3.1.3 Design Methodology 17

3.1.4 Implementation Methodology 17

3.1.5 Testing Methodology 17

3.1.6 Evaluation Methodology 17

3.2 Software Development Life Cycle 18

3.2.1 Life Cycle Selection 18

3.2.2 Step and Task Breakdown 18

3.2.3 Life Cycle Alternatives 18

3.3 Resources 18

3.4 Project Management 18

3.5 Project Plan 19

3.6 Reflection on Step Completion 21

3.6.1 Research and Requirements 21

3.6.2 Design 21

3.6.3 Implementation 21

3.6.4 Testing 21

3.6.5 Evaluation 21

3.7 Deviations 21

3.7.1 Design and Implementation Overlap 21

3.7.2 Implementation and Testing Overlap 22

3.7.3 Report Delays 22

4

4. Requirements and Analysis 23

4.1 Elicitation 23

4.2 Analysis 24

4.2.1 Analysis Approach 24

4.2.2 Project Feasibility 24

4.2.3 Approach Limitations 24

4.3 Results 24

4.3.1 Results Overview 24

4.3.2 Sensor Node Structure 24

4.3.3 Climate Data Measurements 24

4.3.4 Sensor Node Battery Power 25

4.3.5 System Affordability 25

4.3.6 System Modularity 25

4.3.7 Measurement Storage 25

4.3.8 Website 25

4.3.9 Measurement Accuracy and Ranges 25

4.3.10 System Connectivity 25

4.4 Functional Requirements Specification 26

4.4.1 Indoor Sensor Node 26

4.4.2 Outdoor Sensor 26

4.4.3 Sensor Node Temperature Recording 26

4.4.4 Sensor Node Temperature Units 26

4.4.5 Sensor Node Humidity Recording 26

4.4.6 Sensor Node Recorded Data 26

4.4.7 Sensor Node Identifier 27

4.4.8 Additional Sensor Types 27

4.4.9 Multiple Sensor Nodes 27

4.4.10 Sensor Battery Power 27

4.4.11 Sensor Names 27

4.4.12 Climate Data Accessible by External Services 27

4.4.13 Website 28

4.4.14 Website Authorised Data Access 28

4.4.15 Website Desktop/Laptop Access 28

4.4.16 Website Mobile Access 28

5

4.4.17 Sensor Node List 28

4.4.18 Historical Climate Data Visualisation 28

4.4.19 Recent Climate Data 29

4.4.20 Website Temperature Units 29

4.4.21 Climate Data Deletion 29

4.4.22 Sensor Deletion 29

4.4.23 Website Sensor Naming 29

4.4.24 Login 29

4.4.25 Register 30

4.4.26 Forgot Password 30

4.4.27 Add Sensor Node 30

4.4.28 Sensor Status 30

4.5 Non-functional Requirements Specification 30

4.5.1 Recent Climate Data 30

4.5.2 Temperature Climate Data Accuracy 30

4.5.3 Temperature Climate Data Range 31

4.5.4 Humidity Climate Data Accuracy 31

4.5.5 Humidity Climate Data Range 31

4.5.6 Concurrent Climate Sensor Nodes 31

4.5.7 Climate data storage duration 31

4.5.8 Sensor Recording Frequency 31

4.5.9 Sensor Recording Frequency Consistency 32

4.5.10 Sensor Battery Life 32

4.5.11 System Affordability 32

4.5.12 Installation Usability 32

4.5.13 Maintenance Usability 32

4.5.14 Sensor Node Distance 32

4.5.15 User Data Security 33

5. Design 34

5.1 Approach 34

5.2 Overall Design 34

5.3 Sensor Device 35

5.3.1 Sensor Device Hardware Requirements 35

5.3.2 Sensor Device Microcontroller and Radio 35

6

5.3.3 Sensor 35

5.3.4 Microcontroller Battery 36

5.3.5 Case 36

5.3.6 Electronics Layout 36

5.3.7 Microcontroller Software 36

5.4 Base Station 38

5.4.1 Base Station Hardware Requirements 38

5.4.2 Base Station Computer 38

5.4.3 Radio 38

5.4.4 Case 38

5.4.5 Electronics Layout 38

5.4.6 Operating System 38

5.4.7 Required Software Subsystems 39

5.4.8 Sensor Node Communication Manager 39

5.4.9 Web-server 40

5.4.10 Wi-Fi Manager 40

5.5 Radio Protocol 40

5.5.1 Protocol Requirements 40

5.5.2 Packet Structure 41

5.5.3 Error detection 41

5.5.4 Packet Collisions Handling 41

5.5.5 Protocol Data Units 41

5.5.6 Ack PDU 42

5.5.7 Climate Data PDU 42

5.5.8 Initialisation PDU 42

5.5.9 Time-Period PDU 42

5.5.10 Node ID and Time Period PDU 42

5.5.11 Exchange sequences 43

5.6 API 43

5.6.1 Design approach 43

5.6.2 API architecture 44

5.6.3 API Data Format 44

5.6.4 Endpoint Structure 44

5.6.5 Authentication 45

7

5.7 Database 45

5.7.1 Database Architecture 45

5.7.2 Database Structure 46

5.7.3 Password Hashing and Salting 46

5.8 Website 47

5.8.1 Website Architecture 47

5.8.2 Sitemap and Page Hierarchy 47

5.8.3 UI Design 48

6. Implementation 51

6.1 Sensor Nodes 51

6.2 Base Station 51

6.3 Website 52

6.4 Difficulties Encountered 53

6.5 Reflection on Implementation 54

7. Testing 55

7.1 Requirements Validation 55

7.2 Design Validation 55

7.3 Implementation Validation Approach 55

7.4 Sensor Node Testing 55

7.4.1 Approach 55

7.4.2 End-to-end Testing 56

7.5 Base Station Testing 56

7.5.1 Approach 56

7.5.2 Unit Testing 56

7.6 API Testing 56

7.6.1 Approach 56

7.6.2 Unit Testing 57

7.7 Web-server Testing 57

7.7.1 Approach 57

7.7.2 Unit Testing 57

7.8 Database Testing 57

7.8.1 Validation Approach 57

7.8.2 Unit Testing 57

7.9 Website 57

8

7.9.1 Approach 57

7.9.2 Unit Testing 58

7.9.3 End-to-end tests 58

7.10 Overall results 58

8. Evaluation 59

8.1 Method 59

8.2 Questionnaire 59

8.2.1 Questionnaire Design 59

8.2.1 Questionnaire Results 59

8.3 Evaluation Structure 60

8.4 Functional Requirements Evaluation 60

8.4.1 Indoor Sensor Node Requirement 60

8.4.2 Outdoor Sensor Requirement 60

8.4.3 Sensor Node Temperature Recording Requirement 60

8.4.4 Sensor Node Temperature Units Requirement 60

8.4.5 Sensor Node Humidity Recording Requirement 60

8.4.6 Sensor Node Recorded Data Requirement 60

8.4.7 Sensor Node Identifier Requirement 60

8.4.8 Additional Sensor Types Requirement 61

8.4.9 Multiple Sensor Nodes Requirement 61

8.4.10 Sensor Battery Power Requirement 61

8.4.11 Sensor Names Requirement 61

8.4.12 Climate Data Accessible by External Services Requirement 61

8.4.13 Website Requirement 61

8.4.14 Website Authorised Data Access Requirement 61

8.4.15 Website Desktop/Laptop Access Requirement 61

8.4.16 Website Mobile Access Requirement 62

8.4.17 Sensor Node List Requirement 62

8.4.18 Historical Climate Data Visualisation Requirement 62

8.4.19 Recent Climate Data Requirement 62

8.4.20 Website Temperature Units Requirement 62

8.4.21 Climate Data Deletion Requirement 62

8.4.22 Sensor Deletion Requirement 63

8.4.23 Website Sensor Naming Requirement 63

9

8.4.24 Login Requirement 63

8.4.25 Register Requirement 63

8.4.26 Forgot Password Requirement 63

8.4.27 Add Sensor Requirement 63

8.4.28 Sensor Status Requirement 64

8.5 Non-functional Requirements Evaluation 64

8.5.1 Recent Climate Data Requirement 64

8.5.2 Temperature Climate Data Accuracy Requirement 64

8.5.3 Temperature Climate Data Range Requirement 64

8.5.4 Humidity Climate Data Accuracy Requirement 64

8.5.5 Humidity Climate Data Range Requirement 64

8.5.6 Concurrent Climate Sensor Nodes Requirement 64

8.5.7 Climate Data Storage Duration Requirement 65

8.5.8 Sensor Recording Frequency Requirement 65

8.5.9 Sensor Recording Frequency Consistency Requirement 65

8.5.10 Sensor Battery Life Requirement 65

8.5.11 System Affordability Requirement 65

8.5.12 Installation Usability Requirement 65

8.5.13 Maintenance Usability Requirement 65

8.5.14 Sensor Node Distance Requirement 66

8.5.15 User Data Security Requirement 66

8.6 Overall evaluation 66

9. Conclusion 67

9.1 Conclusion 67

9.2 Reflection 68

9.2.1 More Flexible Project Plan 68

9.2.2 Feature Prioritisation 68

9.2.3 Technology Compatibility 68

9.2.4 Methodology Selection 68

9.3 Future Work 68

9.3.1 Additional Sensor Modules 68

9.3.2 Sensor Node Communication Range 69

9.3.3 Sensor Module Interface Standardisation 69

9.3.4 Base Station Code Updating 69

10

9.3.5 Improved Radio Protocol 69

9.3.6 Website Secondary Features 69

9.3.7 Sensor Accuracy Testing 69

9.3.8 Alternative Low-cost Hardware 69

10. References 70

11. Appendices 74

11.1 Appendix A: Project Initiation Document 74

11.2 Appendix B: Ethics certificate 83

11.3 Appendix C: Source code link 84

11.4 Appendix D: Requirements background research 85

11.5 Appendix E: API Endpoint Documentation 94

11.6 Appendix F: Database Data Types 121

11.7 Appendix G: UI Designs 123

11.8 Appendix H: Battery Life Calculation Spreadsheet 141

11.9 Appendix I: Test Plan and Results 142

11.10 Appendix J: Questionnaire Design 161

11.11 Appendix K: Questionnaire Responses 174

11

List of Figures
Figure 1. Project Plan 19

Figure 2. Overall System Structure 33

Figure 3. Electronic layout of the sensor node 35

Figure 4. Flowchart of the sensor nodes 36

Figure 5. Electronic layout of the base station 37

Figure 6. Flowchart of sensor node communication manager 38

Figure 7. Flowchart of the Wi-Fi manager 39

Figure 8. LowPowerLab. LowPowerLab RFM69 library packet structure, 2013 40

Figure 9. Radio protocol packet sequences 42

Figure 10. Database entity relationship diagram 45

Figure 11. Website sitemap with page hierarchies 46

Figure 12. Desktop dashboard wireframe UI design 47

Figure 13. Mobile dashboard wireframe l UI design 48

Figure 14. Desktop dashboard high-level UI design 48

Figure 15. Mobile dashboard high-level UI design 49

12

1. Introduction
The number of active IoT (Internet-of-things) devices is expected to grow considerably with
McKinsey predicting 43 billion IoT devices worldwide by 2023 (McKinsey, 2019). Weather
stations are one type of system adopting IoT technology, with newer products including
Netatmo (Netatmo, 2012) and BloomSky (BloomSky, 2016) using IoT to provide additional
functionality and connectivity. The (World Meteorological Organization, 2018) defines
these automated weather observing systems to be an integrated system of measuring
instruments, transmission units, data processing functionality, and interfaces that collect
weather measurements. Older weather stations such as Davis Vantage Vue (Davis
Instruments, 2009) were limited to a single weather station with a base station with an LCD
screen displaying the weather conditions recorded by the weather station. While more
recent weather stations come with functionality including built-in internet connectivity,
websites, mobile applications, and connectable services.

Weather stations allow users to not only understand current and historical weather
conditions but react to any changes in the weather conditions. Additionally, a consumer
application is connecting weather stations to home automation systems through internet-
based connectable services. The measurements are then used to control the actions of
the home automation system, such as activating air conditioning when a room’s
temperature is too high. The connectable automation services such as IFTTT have made
this home automation integration possible due, instead of installing complete home
automation systems. Weather station community websites such as Citizen Weather
Observer Program (CWOP), Met Office Weather Observations Website (WOW), and
Weather Underground (WU) are available for users to share their measurements with
others. CWOP sees considerable use with over 8000 active weather stations uploading
their weather observations each day (CWOP, 2020). Professional applications of weather
stations include smart-farming where weather stations provide remote monitoring of
weather conditions across large areas used by farmers (Business Insider, 2020).

While weather stations have started to take advantage of IoT technology they still suffer
from many of the limitations of older devices. These limitations have been identified as the
problems this paper will attempt to solve. One of these is the lack of modularity in the
number of locations being concurrently measured and the types of climate data they
measure. Another limitation is that these systems are often expensive, especially if being
implemented into a wider home automation system where additional hardware and smart
devices are required to fulfil the complete automation functionality. Many of the problems
encountered in the use of these weather stations are similar to those of home automation,
in which household penetration is expected to grow from 9.3% at the start of 2020 and is
predicted to hit 19.3% in 2024 (Statista, 2020). Regardless of the difficulties identified by
(Brush et al, 2016) that limit the user adoption of home automation, including inflexibility,
high costs, poor manageability, and security. (Gomez & Paradells, 2010) similarly
identified barriers in the wider adoption of smart home systems, with high prices and
technological fragmentation being among the top barriers. These barriers must be
considered during the development of new smart home and home automation systems to
ensure adoption by users.

Based upon the existing product limitations and user adoption barriers, the system aims to
solve the problem that it is difficult to get accurate and real-time information about indoor
and outdoor climates in areas that you live in or own such as your house or office. While
the system will provide greater modularity, affordability, and flexibility than existing

13

products and deliver the same core functionality available in newer weather stations
including websites and connectable services.

The paper is organised into 11 sections. Section 2 evaluates the existing research within
the system's background and in related systems. Section 3 defines the methodologies and
project management techniques used in each stage. Section 4 describes the elicitation,
evaluation, and specification of the requirements. Section 5 outlines the methods and
outcomes used in the system’s design. Section 6 reflects on the system’s implementation.
Section 7 describes the testing methods used and the results. Section 8 evaluates the
results of the tests and questionnaire against the requirements specification. Section 9
concludes work on the project and the future work that can be completed with the system
and in the project area.

14

2. Literature Review

2.1 Background

2.1.1 IoT & Smart Homes
The Internet Research Task Force (IETF) describes IoT to be the interconnection between
entities and networks that can perform thing-to-thing, thing-to-things, human-to-human, or
human-to-thing communication patterns (Internet Engineering Task Force, 2019). This is
important in designing how the different components of the system interact based on their
communications patterns. The IETF further defines these things as computing devices that
track and react to their environment. Additionally, the IETF identifies the following
constraints of IoT devices: limited computational power, memory, power consumption, and
wireless network bandwidth (Internet Engineering Task Force, 2014a). These constraints
must be considered when designing the system to pick the correct hardware and
functionality. (Gomez & Paradells, 2010) identified many IoT communication technologies
that have become available including ZigBee, Z-Wave, INSTEON, Wavenis, 6LowPAN.
These also should be considered when designing communication between the systems
components as they are better suited to IoT applications. (De Silva, Morikawa, & Petra,
2012) defines smart homes to possess automatic control by tracking the behaviour of
residents and responding by providing facilities, this is achieved by using sensors to gather
data to identify actions and events. The smart home context must be understood as the
potential main use case of the system, as it should be able to interact with other smart
devices.

2.1.2 Weather Stations
(Bell, Cornford, and Bastin, 2013) analysed the use of the WU and WOW services by
personal weather station systems. Though this reflects use of the services in 2013, it
identifies many statistics on weather station use by consumers. Including the product
usage share, the costs ranging between £100 to over £1000, the measurement intervals
used including 15, 10, 5, minutes and 1 minute, and the types of system structure these
products use with a majority including an outdoor sensor with an indoor console. This is
useful in understanding what user's will want from a weather station but does not provide
information on use of more modern IoT weather stations such as BloomSky that were
released after the paper was released. This shows a clear gap for future research on the
adoption of IoT technologies by weather station systems and how this affects consumer
user of the systems. (Bell, Cornford, & Bastin, 2015) evaluated the flaws of the
measurements provided by users of WU, WOW, and the CWOP. They identified a warmer
temperature bias that was linked to other variables in the design and placement of the
weather station. They provided a method of correcting the biases by evaluating these
variable relationships, due to this they advise that any application of the data used from
these services use quality control to remove errors and correct biases. The flaws identified
included issues with sensor calibration, weather station design, communication, and
software errors. As these flaws can cause measurement bias, they need to be accounted
for in the system design. Similar usage statistics to (Bell et al. 2013) were described, but
additionally identified that the majority of users put their stations in their garden, this is
must be considered as the main consumer location during the requirements and design
stage as it requires weatherproofing the weather station. (Williams, Cornford, Bastin,
Jones, & Parker, 2011) also analysed the biases on the temperature data provided by
users of the Weather Underground service when compared to the temperatures available
from nearby Met Office weather stations, this demonstrated a significant warm bias similar
to (Bell et al, 2015). Based on the few pieces of literature identified, there is limited
research on the limitations or user problems with weather station devices apart from those

15

focused-on measurement accuracies. User surveys should be produced from existing
weather station users to understand any missing features, feature priorities, and usability
issues.

2.2 Related Work

2.2.1 Weather Stations
Many papers have designed and implemented various weather station systems by
combining existing hardware and software technologies. (Kusriyanto & Putra, 2019)
implemented a weather station using an Arduino with an ESP8266 Wi-Fi module to
provide an internet connection, and multiple sensor modules. The measured data is stored
locally, displayed on an LCD screen, and available on an IoT dashboard website by
sending the measurements over an internet connection. Tests were completed on the
accuracy of the measured data compared to a trusted source. While (Saini, Thakur, Ahuja,
Sabharwal, & Kumar, 2016) implemented a weather station using an Arduino Uno and the
ZigBee protocol to wirelessly connect the Arduino to a computer. The measured data is
displayed on a website hosted on the computer. The interface used is outdated, though it
uses purpose specific display methods for the different types of measured data. While
testing was completed on the accuracy of the data compared to a trusted source, no tests
were completed on the maximum range of the weather station though use of Zigbee
should provide better range and lower power consumption than (Kusriyanto & Putra,
2019). Similarly (Adityawarman & Matondang, 2018) implemented an automated weather
observing system using an ATmega32u4 microcontroller, BME280 sensor, battery, and
Long Range (LoRa) radio transceiver as a sensor node. This node sends the measured
climate data to a gateway computer with a LoRa module attached and onto a server, a
website then displays the measured data in graphs. No tests were completed on the
maximum range of the weather station even though LoRa is designed for long-range
communication. (Savic & Radonjic, 2016) created a weather station using a Raspberry Pi
to provide measurements and store them locally. This data was then available for viewing
through a bespoke Android app accessible via the local Wi-Fi network, though it had no
access over the internet. Additionally, the application is limited to displaying the most
recent measured values with no historical data or graphs, this made it the most basic
system researched.

While the systems of the previous papers focus on a single node and receiver, (Kapoor &
Barbhuiya, 2019) proposed using multiple Raspberry Pi Zero W as sensor nodes, with a
Raspberry Pi 3 as a base station to support the multiple sensor nodes. Amazon Web
Services (AWS) was in the storage and processing of the data. A machine-learning model
was trained and used to send notifications of significant or alarming predicted changes in
weather conditions to the user. This was the only paper to use condition predictions to
provide greater functionality, this should be considered as an additional feature for the
system that could be implemented through future work, but is outside the scope of this
paper, though the system’s design should be flexible for these additional features.

While other literature did not have focused use cases, (Tenzin, Siyang, Pobkrut, &
Kerdcharoen, 2017) considered the smart farming use case to implement a weather
station. The system consists of a solar-powered weather station recording measurements,
this data is then sent using an Xbee module to a Raspberry Pi which is then forwarded to a
cloud storage service. The stored data was regularly exported from a database to third
party programs for analysis purposes. Tests were performed to compare the measured
data to the data collected by a commercial product demonstrating very similar results,
though it lacks an interface for viewing the measurements it can be integrated or expanded

16

to provide viewing functionality. (Kanagaraj, Kamarudin, Zakaria, Gunasagaran, & Shakaff,
2015) took a different approach by proposing a system with multiple weather stations
positioned across the state of Perlis in Malaysia. This used Wireless Sensor Networks
(WSN) and cloud services to provide a website displaying the current weather conditions
for each weather station imposed over a map. The WSN structure provided mesh
networks for the weather stations to use to connect to local embedded computer systems
that uploaded the measured data to the cloud services. Use of WSN should be considered
within the system due to the range benefits it provides. This had the most types of data
measured and was the only paper to include air and ground measurements.

Based on the trends of the related work, weather stations are being designed either with
Arduino compatible microcontrollers or Raspberry Pi, demonstrating the use of low-cost
hardware which will be required in this system to make the final system affordable. Most
papers aren’t focusing Additionally, traditional networking protocols and IoT specific
protocols are being explored, though there has been limited research and testing on
evaluating the use of LoRa to provide weather stations covering very large geographic
areas, thus future work needs to be completed.

2.2.2 Home Automation
Additionally, many home automation systems implement weather station sensor nodes to
collect physical measurements and use them in part of a wider system. Based on this
there is research that could be completed in combining existing home automation
components with weather stations to evaluate their compatibility and suitability for smart
homes. (Rahman, Hossen, & Rahama, 2017) also implemented a sensor node using a
Raspberry Pi but used the PubNub cloud-based dashboard to display the measurements
retrieved by the sensor node. The system uses a sensor management system to manage
multiple sensors providing a use for the sensor nodes in a larger smart home system.
(Vujović & Maksimović, 2015) also implements a home automation sensor node by using a
Raspberry Pi, and again is designed for use in a larger system. The node provides an API
service to provide measurement data retrieval via the internet, thus the user must have
significant technological knowledge to integrate the node into a larger system.

17

3. Methodologies and Project management

3.1 Methodology

3.1.1 Overall Methodological Approach
The methodological approach was based upon the premise that fixing the limitations of
existing weather station systems with a new system that has a modular focused design will
increase user adoption of weather station systems and give a better user experience for
existing weather station users. By using a modular approach the cost of the system can be
reduced as multiple sensor nodes can be used an placed in different locations without
purchasing multiple independent weather stations, additionally users only need to
purchase the sensor modules they require to collect the measurements they want. This
helps provides the affordability aim of the project’s problem. This methodology mainly
influenced the research and requirements steps as these provided the existing limitations
and modular improvements which all later steps considered in their approach. How this
methodology affected each step and their tasks has been described individually.

3.1.2 Research and Requirements Methodology
The requirements step used background research on existing products, which gave an
insight into the features, limitations, purposes, and priorities for the most popular weather
stations on the market. This research analysis then provided an understanding of how
modular focused design fixes the existing limitations, with these fixes being added as
requirement specifications to ensure that the system requirements fulfil the project’s aim
and successfully fix the project’s problem.

3.1.3 Design Methodology
The design step was completed by directly designing functionality that satisfied the
functional and non-functional requirements while considering the wider issues within IoT
and weather stations, and the usability of the UI. This meant that the design followed the
wider methodological approach by including the modularity focused requirements that
ensured that the improvements over existing systems completed by the system.

3.1.4 Implementation Methodology
The implementation step followed the designs to implement each component of the
system. This approach meant that the modularity requirements continued to be considered
across creation of the system so that the methodology and project’s aim were met.

3.1.5 Testing Methodology
The testing step was completed by testing the system directly against the requirements
specification to ensure the project’s aims were met and that the modularity was
implemented successfully. Automated tests were used to confirm correct functionality of
each component giving consistent results when compared to manual testing methods.
Though manual tests used for non-functional requirements that required more complex
testing methods.

3.1.6 Evaluation Methodology
The methodology used in the evaluation step was to combine the test results with the
results of a questionnaire given to potential users of the system and evaluate whether
these results satisfy the requirements specification. This ensures that the methodology
was continued across all steps of the system so that the modularity was achieved, and the
product limitations fixed, and thus completing the project’s aim.

18

3.2 Software Development Life Cycle

3.2.1 Life Cycle Selection
The waterfall model was selected as the software development life cycle. This life cycle
started with the research and requirement step, then the design, implementation, testing
and evaluation steps. This meant that each step and task was approached individually due
to the reliance of each step on the previous step. Overall, the life cycle was mostly
successful with the research, requirements, and evaluation steps being completed in the
planned order as reflected on in section 3.6 though deviations in the other steps were
taken as described in section 3.7.

3.2.2 Step and Task Breakdown
The research step was broken down into research and analysis of existing weather station
products and research papers. The requirements step consisted of elicitation, analysis,
and documentation tasks that were completed in sequence. The design step was broken
down into tasks for each system component, as most of the components rely on each
other. The implementation step included tasks following the same component order as the
design step. The testing step was broken down into tests for each component in a similar
order to the implementation step. The evaluation step included the questionnaire and
requirement evaluation tasks.

3.2.3 Life Cycle Alternatives
While the waterfall model was selected, there were other possibilities such as the agile
methodology. These other life cycles were not selected due to their overall unsuitability for
the project. Agile was not deemed to be suitable due to the number of interconnected
devices, using this model would have resulted in each component having features
developed at once, rather than implementing each component individually then connecting
them.

3.3 Resources

During the project, several resources were used. A desktop computer was used to write
the code, create designs, test the system, and write the report. The base station and
sensor node required various electronics components including breadboards, wires, micro-
USB cables, and resistors. The base station used a Raspberry Pi, Adafruit RFM69HCW
Radio, and a weatherproof case. The sensor nodes BME280 sensor, Adafruit Feather
32u4 RFM69HCW, and a weatherproof case. During the testing, a USB voltmeter was
used to provide the sensor node power consumption, while a laser measure was used to
test the sensor nodes communication range. Open-source libraries have been used and
described in the implementation in section 6.

3.4 Project Management

A Gantt chart was used to track major tasks corresponding to the project steps, this is
shown in figure 1. Each activity in this chart had a start and end date so that the current
task could be easily understood, with the task end dates acting as deadlines. This allowed
for tracking of which tasks were completed and if they were overdue, this was especially
helpful for understanding the project’s progress and delays. This management method
was successful for most of the project as it was regularly checked to understand the
overall progress. But it suffered from a number of drawbacks, the first being that it was
designed early on into the project’s creation so it did not take into account many later
design choices that had impacts on the design, implementation and testing tasks. The

19

second being that it did not always correctly reflect the progress on the project as it only
included major tasks and not minor tasks that were mostly completed on time with only
some of these being overdue.

Supervisor meetings were completed on most Wednesdays each week and provided
opportunities to discuss any problems and plans for the next week’s progress. This
provided a vital way of ensuring accountability in the completion of deadlines by giving a
day to have work completed by each week. Having the meetings on Wednesday allowed
for development on Tuesdays, Wednesdays, and Fridays, with additional smaller pieces of
work being completed on Mondays and Thursdays when other commitments required
prioritisation. A Google Sheets spreadsheet was during the meetings to note the current
week’s progress and the next week’s tasks so that precise progress could be understood.

A Trello board was used to track the individual tasks and subtasks during the
implementation, testing, evaluation, and report writing. Lists were used to organise the
area that tasks were being completed in. Within each list, cards were created for subtasks
with each card being given a priority via a colour labelling system, and a due date. This
allowed for understanding of the next tasks to be completed and when it should be
completed by. Checklists were used to break down tasks even further and were especially
useful during the implementation and testing tasks in which many small subtasks were
being completed every day. This method was very successful as it provided multiple layers
of prioritisation, deep organisation and structuring of tasks and subtasks, and was
especially helpful for bug tracking. While Trello was used, Github Projects was considered
due to its implementation alongside the project's source code, as pull requests could
reference issues being tracked without plugins. But while it provided straightforward
integration it lacked many of the features provided by Trello including the deadline,
labelling and checklist features, thus demonstrating that Github Projects is only focused on
bug tracking and limited feature tracking.

3.5 Project Plan

20

Figure 1. Project Plan

21

3.6 Reflection on Step Completion

3.6.1 Research and Requirements
The research and requirements steps were completed on time for each task’s deadline
according the project plan. This was mainly due to the indirect research and requirements
elicitation methods used which required less time to complete than more direct methods
such as interviews. Though some additional product research was completed during the
design and implementation steps to understand the user interfaces provided by the
products so that their advantages and disadvantages could be analysed. This was not
accounted for in the project plan, though it could not have been completed before the
design and implementation steps as it was reliant on the user interface requirements to be
specified.

3.6.2 Design
The design step was mostly completed on time for the project plan’s deadlines, though
additional time was spent designing the user interface, which was not finished until the 18th
of January, this deviation is described in section 3.7.2. This was much later than the
previous December 8th deadline, which in reflection was not long enough to achieve a well-
designed user interface that included the relevant requirements and usability. Instead at
least two or three weeks could have been used to iterate over the user interface designs
rather than the one week specified by the plan, as the three weeks were used to iterate
while working on the implementation tasks.

3.6.3 Implementation
The implementation was completed on time for the deadlines even with the delays from
the design step. Though the approach of creating combinable and reusable components
for each part of the system meant that additional bug and test fixes were completed after
the implementation step was formally completed, resulting in the deviation in section 3.7.2.
In reflection this was unavoidable as spending time completing additional features and
fixes at the end of the implementation step would have caused greater delays than
completing them during the testing step.

3.6.4 Testing
The testing step was completed earlier than expected a week before the deadline, this was
due to the planned week for testing each subsystem which was more than required for
tasks such as testing the sensor node and implementing the end-to-end tests. This meant
that the delays caused by the deviation in section 3.7.2 only affected the task deadlines
within the testing step and not the overall step deadline.

3.6.5 Evaluation
The evaluation step was completed during the report writing as planned but was finished a
week after its initial deadline due to the report delay deviation described in section 3.7.3.
This step was completed over a few days as it relied on the questionnaire and requirement
specification tasks which had already been completed, this helped ensure that the final
report writing was finished before submission.

3.7 Deviations

3.7.1 Design and Implementation Overlap
Overlapping of tasks occurred during the website design and implementation. This was
caused by the website design being delayed due to a focus on implementing the sensor
nodes and base station over December and January along with changes in the database

22

design. This resulted in the website designs being completed during implementation just
before the website implementation was started.

3.7.2 Implementation and Testing Overlap
Additional time was spent improving the implementation during the testing due to
additional unplanned features, bugs fixes and fixes for failing tests being completed. This
resulted in delays for the website testing and in starting the evaluation step with these
delays being exacerbated by the existing delays from the deviation in section 3.6.1.

3.7.3 Report Delays
The report had delays across all sections, this was due to other commitments and difficulty
in starting the writing based on the notes that had already been established for a few
months before the writing began. This resulted in the report being written later than
originally planned with delays ranging from 2 weeks to a month depending on the section.
The delays of this deviation had large impacts as the report sections were planned to be
completed per week, though some were written in a day or two to catch up with the final
deadline with the report being completed one week before it was due. The section delays
were mainly due to completion of the larger literature review, design, and implementation
sections as the structure of the notes for each these made it harder write formally when
compared to writing a section without pre-established notes and ideas.

23

4. Requirements and Analysis
This section introduces a description of the problem being solved, the methods used to
elicit and analyse these requirements, and the specification of the system’s requirements.
This section has been built upon the initial requirements as established within Appendix A
the Project Initiation Document.

4.1 Elicitation

The requirements were indirectly elicited through background research of the existing
weather station products. This method of retrieving requirements was completed as the
problem is focused on producing a cheaper and more modular solution to the existing
systems and not about delivering a new and unique system. This meant that direct
requirements elicitation from users was not required but could have been used to better
understand what secondary features, usability, or performance issues that users have
found with existing systems. It would have also provided feedback for users to describe
features that were not offered by existing systems.

The products found during this research have been displayed in table 1, along with their
main feature and specifications. Additional features and specifications were researched
and included in the full background research in the Appendix D. The features researched
included: cost, whether they support multiple nodes, have modular nodes, types of sensor
data collected, and the accuracy and ranges of the temperature and humidity values,
maximum node range, website features available, connectable services, measurement
frequencies and the number of nodes per account. These specifications were selected as
they demonstrated the suitable purposes, and priorities of each product.

Name Cost Multiple
Nodes

Modular
Nodes

Temperature
Accuracy

Temperature
Range

Humidity
Accuracy

Humidity
Range

WeatherFlow £234 Yes No ±0.4°C -38°C to 60°C ±4%. 0 to 100%

Ambient
Weather
Osprey
Weather
Station

£100 No No ± 0.5°C -40 to 65°C ± 5% 10 to 99%

AcuRite Atlas £145 No No ± 1°C -40 to 70°C ± 2% 1% to
99%

Davis
Vantage Vue

£350 No No ± 1°C -40° to 65°C ± 2% 1% to
100%

BloomSky £295 No No ±0.3°C 0°C to 65°C ± 3% 10% to
90%

BRESSER
WiFi
Professional
Weather
Station

£197 No No Not specified. -40°C to 60°C ± 1% 1% to
99%

Netatmo £149.99 Yes No ± 0.3°C -40°C to
65°C

± 3% 0 to 100%

Table 1. Existing products and their features

24

4.2 Analysis

4.2.1 Analysis Approach
Most of the requirements were analysed from the trends in the features and specifications
for the existing projects researched in the elicitation. These requirements were focused on
existing product features and improving upon their limitations. The rest of the requirements
were then extracted through analysis of the problem specification, this provided much of
the core functionality of the system. The relative importance of each requirement was then
analysed from their importance in solving the problem and whether they matched the
features offered by the existing systems as this indicates whether they are an important
feature.

4.2.2 Project Feasibility
Due to the limited amount of time available to produce the system and affordability aim of
the project some secondary and usability features have been given lower importance or
left out so that the primary problem and aims of the project can be fully focused on. This
approach may not result in a polished commercial product but a functional but rough
prototype of a solution that solves the problem but has limited usability and secondary
features. These features include using solar power for recharging the sensor nodes,
providing weather forecasting on the website for a node’s location, and displaying a
community sensor node map so that users can view other user’s sensor node data.

4.2.3 Approach Limitations
While this approach provides requirements for a system that is built directly from the
analysis of the problem and a snapshot of the features and limitations of existing systems,
it relies on assuming users want the features specified by existing products. But this
approach is suitable when considering the project’s aim is to improve upon existing
systems based on their limitations and not to produce a unique and new system that
fundamentally reinvents personal weather stations. This approach could have been
improved from direct user elicitation for the features that they want from a personal
weather station and the importance of these features.

4.3 Results

4.3.1 Results Overview
The results of the analysis demonstrate that the products took different approaches to
solve the problem, though there are clear similarities and trends in the specifications. This
means the requirements specification must be focused on solving the limitations of existing
products while keeping the features provided by the products. These product limitations
mostly match those identified by the papers researched in the literature review.

4.3.2 Sensor Node Structure
The results of the analysis show that all the products offered outdoor sensor nodes with
most providing indoor sensor nodes or similar functionality in the indoor console

4.3.3 Climate Data Measurements
All products offered temperature and humidity measurements, with some providing other
data types including wind speed and direction, UV index, rainfall, light levels. Due to this
the system should support temperature and humidity measurements, but also support any
type of sensor hardware to collect other types of measurements.

25

4.3.4 Sensor Node Battery Power
All used batteries for their sensor nodes with some using solar power to recharge while
others needed manually recharging or replacing their batteries, thus the system’s nodes
must be battery powered. The battery life ranged from two weeks to 2 years, these
depended on whether they used solar power as those that did have shorter battery lives.
Thus, the system will need a battery life of a few months to ensure usability while
balancing affordability.

4.3.5 System Affordability
Most cost between £100 to £200, with two between £200 to £300, and one cost £345,
based on this the cost of the system should be less than £100 to ensure that the system is
more affordable than the existing systems.

4.3.6 System Modularity
Only some of the systems supported multiple sensor nodes with those having many
limitations, thus the system will need to support multiple nodes in the system.

4.3.7 Measurement Storage
All systems had long term storage of the measurement data though they had different max
lengths ranging from 1 month from the measurement to unlimited, this means that the
system will need to support storing data for a long time-period, though a limit is required to
ensure that the database is still performant and storage is exhausted.

4.3.8 Website
All products offered a bespoke website or built-in connectivity to a personal weather
station website. These websites ranged in functionality, but all included recent
measurement values, and all but one product displayed the measurements graphed over
time, management of the sensor nodes and configuration options. All the products that had
management and configuration options required user authorisation to access this
functionality, though not authorisation was required to view the recent and historical
climate data. Thus, the system will need to provide a website covering recent and
historical climate data visualisation, sensor node management and configuration
functionality. Additionally, all websites supported mobile, desktop, and laptop devices, thus
the system will need to be compatible with modern browsers across these devices.

4.3.9 Measurement Accuracy and Ranges
All products had similar accuracies, ranging from 0.3°C to 1°C for temperature and 1% to
5% for humidity. Thus, the system should aim for the best possible measurement
accuracies to be similar to these products while balancing costs and hardware support.
Similarly, all products had nearly identical measurement ranges with the temperature
ranges being between -40°C to 70°C and humidity ranges from 1% to 100%, thus the
system will need to support as many locations and purposes as possible by supporting
large measurement ranges for all types of climate data.

4.3.10 System Connectivity
All but two of the products offered connectivity to internet-based services such as
Amazon’s Alexa and IFTTT, due to the aim of this system being part of wider smart home
systems it will need to be able to connect to these services. None of the systems required
technical knowledge to use the system, thus the system should be suitable for anyone to
use, install, and maintain the system.

26

4.4 Functional Requirements Specification

The requirements listed below describe the functions that the system will need to perform
so that the system successfully solves the problem.

4.4.1 Indoor Sensor Node
The system shall have a node that uses sensors to measure the surrounding climate and
is designed to be used indoors.
Rationale: The problem specifies that the system will need to measure climates and be
modular so flexibility on where the sensor nodes can be placed will be required.
Importance: High importance as modularity is a main aim and a main limitation of the
existing systems, with only some systems offering indoor climate measuring.

4.4.2 Outdoor Sensor
The system shall have a node that uses sensors to measure the surrounding climate and
is designed to be used outdoors.
Rationale: The problem specifies that the system will need to measure climates and be
modular so having flexibility on where the climate sensor nodes can be placed will be
required.
Importance: High importance as all existing systems have outdoor sensors.

4.4.3 Sensor Node Temperature Recording
The sensor nodes shall record the temperature from the surrounding climate.
Rationale: The problem specifies that temperature is a key part of the climate data and all
existing systems record temperature so it will need to be recorded.
Importance: High importance as all existing systems record temperature measurements.

4.4.4 Sensor Node Temperature Units
The sensor nodes shall record the temperature in Celsius while being able to view this
temperature in other units of measurement.
Rationale: The sensors should all record the same unit of measurement, with this unit then
being available for conversion at a later stage (i.e. Celsius converted to Fahrenheit).
Importance: High importance as the data is not useful if the unit of measurement is not
specified or consistent, and all existing systems provide Celsius and Fahrenheit as
temperature units of measurement.

4.4.5 Sensor Node Humidity Recording
The sensor nodes shall record the relative humidity from the surrounding climate.
Rationale: The problem specifies that humidity is a key part of the climate data and all
existing systems record humidity so it will need to be recorded.
Importance: High importance as all existing systems record humidity.

4.4.6 Sensor Node Recorded Data
The sensor nodes shall record the climate data along with the time and date while making
the climate data accessible for viewing on the website.
Rationale: The recorded climate data will need to be accessible via a website, so it will
need to be stored in a location that the website can retrieve the data from. The time and
date so that the changes in climate data can be tracked over time.
Importance: High importance as the problem specifies that a website will be required to
view the data remotely over the internet, and all systems had a website that allowed for the
remote viewing of the climate data.

27

4.4.7 Sensor Node Identifier
Each sensor node shall be identified by a unique identifier across the system.
Rationale: The climate data will need to be linked to the sensor that recorded the data
once it has been stored within the system so that the data can be understood.
Importance: High importance as the otherwise users would not know which sensor
recorded the data and tracking climate data in the system would be difficult.

4.4.8 Additional Sensor Types
The sensor nodes shall have the capability to connect to additional sensors that can
record other types of climate data.
Rationale: A main aim of the project is modularity so having sensor nodes that can record
multiple types of data from separate sensors while only using one node is required.
Importance: High importance as all existing systems record additional data other than just
temperature and humidity, so having full sensor modularity will allow the system to be
more flexible than existing systems, while also allowing them to be parallel with the types
of climate data recorded by the existing systems.

4.4.9 Multiple Sensor Nodes
The system should support multiple sensor nodes that each record their own climate data.
Rationale: A main aim of the project is modularity so having multiple sensor nodes that can
record data from their own sensors is required.
Importance: High importance as modularity is a key part of the problem and major
limitation of the existing systems as only some of the systems can support multiple sensor
nodes.

4.4.10 Sensor Battery Power
The sensor nodes should be battery-powered.
Rationale: The sensor nodes will need to be placed within ideal locations to get good
climate measurements of the location, without restrictions on their placement.
Importance: High importance as all existing systems had sensor nodes powered by
rechargeable or replaceable batteries.

4.4.11 Sensor Names
The sensor nodes should each have a user-defined name.
Rationale: The system will support multiple sensor nodes thus users will need to identify
which sensor captured the data and where this sensor is located, thus a user-defined
name allows users to describe the location of the sensor.
Importance: Medium importance as it does not affect whether the system works but has a
large impact on the usability of the system.

4.4.12 Climate Data Accessible by External Services
The climate data should be accessible by connectable services that have permission from
the user to access their climate data.
Rationale: This allows for the climate data to be used to achieve additional smart home
functionality e.g. an external service gets a sensor’s temperature data and the service
controls air conditioning in the room the sensor is located in.
Importance: Low importance as it does not directly impact the functionality of the system
but allows for a greater use case within a smart home system, this feature is also available
at most of the existing systems which can connect to various personal assistant
applications and internet of things services.

28

4.4.13 Website
The system shall provide access to a website over the internet that acts as a dashboard
for the sensor’s and their climate data.
Rationale: The problem specifies that climate data should be accessible remotely, a
website accessible via the internet would allow for easy access by users.
Importance: High importance as viewing the climate data remotely is a key part of the
problem and all existing systems have a website displaying the climate data.

4.4.14 Website Authorised Data Access
The website shall only provide access to a user’s climate data after the user’s email and
password has been provided and validated against the email and password stored for that
user.
Rationale: The sensor and user data should be secure being an authorisation method so
that only the owner of the account can access their account’s data.
Importance: High importance as it keeps the project in parallel with the existing systems
that all used user registration and login functionality.

4.4.15 Website Desktop/Laptop Access
The website shall be accessible with modern browsers on desktop and laptop devices.
Rationale: The website will need to be accessible by users that use desktop and laptop
devices, thus the website needs to work correctly on modern browsers available on these
devices. While supporting older browsers requires additional development time and is
unnecessary for a prototype implementation of the system.
Importance: High importance as it is required for the system to achieve the project’s aim of
having a website to view the climate data on, and all existing systems have a website with
a user interface specifically designed for desktop and laptop devices.

4.4.16 Website Mobile Access
The website shall be accessible on mobile devices with this website having a user
interface optimised for mobile devices.
Rationale: The website will need to be accessible by users that use mobile and tablet
devices, thus the website needs to work correctly on modern browsers available on these
devices. While supporting older browsers requires additional development time and is
unnecessary for a prototype implementation of the system.
Importance: High importance as it is required for the system to achieve the project’s aim of
having a website to view the climate data on, and all existing systems have a website or
application with a user interface specifically designed for mobile devices.

4.4.17 Sensor Node List
The website shall provide access to a list of a user’s sensor nodes, with each sensor being
displayed with their name and a summary of their latest climate data.
Rationale: As the system will support multiple sensors for each user, the users should be
able to view the sensor’s they have and their recorded data.
Importance: High importance as it is required for the system to achieve the project’s aim of
having a website to view the climate data and keeps it in parallel with the existing systems
that support multiple sensors.

4.4.18 Historical Climate Data Visualisation
The website shall provide graphical visualisation of a user's climate data over time based
on user-specified date and time ranges.
Rationale: Viewing the historical data of a sensor allows users to understand the trends of
climate data over time for analysis purposes.

29

Importance: High importance as it is required to achieve the project’s aim of having a
website to view the climate data and keep it in parallel with the existing systems as they all
have graphical visualisations of the historical data.

4.4.19 Recent Climate Data
The website shall provide access to the most recent data recorded from each sensor node
assigned to the user.
Rationale: The problem specifies viewing the current climate around each sensor.
Importance: High importance as it is required for the system to achieve the project’s aim of
having a website to view the climate data and keeps it in parallel with the existing systems
as they all have dashboards displaying the recent data collected by each sensor.

4.4.20 Website Temperature Units
The website shall allow users to view recorded temperature data in Celsius or Fahrenheit.
Rationale: By storing the temperature data consistently in Celsius, these values can be
converted to Fahrenheit so that users can view the data in the unit they prefer within the
website without affecting the data stored within the system.
Importance: Medium importance as it doesn’t directly affect whether the project meets its
aim, but it is important for improving the usability of the system.

4.4.21 Climate Data Deletion
The website shall provide the ability to delete all climate data recorded by a sensor.
Rationale: Users may move a sensor's physical location and may want to reset the stored
data as the previous climate data is not representative of the new location.
Importance: Medium importance as it doesn’t directly affect whether the project’s aim is
achieved but it impacts the efficiency of testing the system and the usability of moving the
location of sensor nodes.

4.4.22 Sensor Deletion
The website shall provide the ability to delete a sensor from a user’s account.
Rationale: Users can have multiple sensors, so they may want to remove a sensor from
the system, if they are no longer using a specific sensor.
Importance: Medium importance as it does not directly affect whether the project’s aim is
achieved but it impacts the usability of the system when multiple sensors are being used.

4.4.23 Website Sensor Naming
The website shall allow for the names of the sensor nodes to be edited.
Rationale: Users can have multiple sensors each with different names, so an interface will
be required so that users can edit these names.
Importance: Medium importance as it doesn’t directly affect whether the project’s aim is
achieved but it impacts the usability of the system when multiple sensors are being used
and puts it in parallel with the existing systems that support multiple sensors per user.
4.4.24 Login
The website shall allow registered users to log in once they provide the correct email and
password for their account.
Rationale: Users are required to register to access the website, thus a login page is
required so that registered users can log into the website.
Importance: High importance as a user account system is required to separate users
within the system, this also keeps the system in parallel with the existing systems.

30

4.4.25 Register
The website shall allow users to register by providing a valid email and password.
Rationale: The website will require users to register so a register page is required so that
non-registered users can register.
Importance: High importance as a user account system is required to separate users
within the system, this also keeps the system in parallel with the existing systems.

4.4.26 Forgot Password
The website shall allow users to reset their account password by receiving an email
containing a link to a password reset form on their registered email account.
Rationale: The website will require users to register and login, so a password reset page is
required so that registered users can reset their password if they have forgotten it.
Importance: High importance as a user account system is required to separate users
within the system, this also keeps the system in parallel with the existing systems.

4.4.27 Add Sensor Node
The website shall allow users to add a new sensor node to their account.
Rationale: Users need to set up the sensors with the website so that it is linked to the user.
Importance: High importance as it is required for the project’s aim to be achieved and
impacts whether the climate data for multiple sensors can be viewed on the website.

4.4.28 Sensor Status
The website shall display the sensor’s battery level.
Rationale: Users would need to know if a sensor’s battery is running out of power so that
they can charge the battery and have continuous sensor uptime.
Importance: Medium importance as users would likely already understand if a sensor’s
battery has run out as the time of the last recording would be older, and only some of the
existing systems offered a battery status.

4.5 Non-functional Requirements Specification

The requirements listed below define the effectiveness of the system in achieving its
functionality.

4.5.1 Recent Climate Data
Climate data on the website should be the most recent data within one minute of the data
being recorded on the sensor node.
Rationale: The system should be quick to process data from the time it is sent from the
sensor to be viewable on the website, as showing old data makes the system limited to
users that want to see current climate data and make decisions upon it.
Importance: High importance as out of date data would not be useful to users and viewing
the current climate data is a main aim of the project.

4.5.2 Temperature Climate Data Accuracy
Temperature climate data should be recorded within ±0.5°C accuracy.
Rationale: The recorded temperatures should be accurate in parallel with the accuracy of
the existing systems while maintaining the affordability of the system and the availability of
low-cost temperature sensors.
Importance: High importance as the system would be flawed and not meet the project’s
aim if it does not record temperatures that are useful enough to be used to analyse the
climate.

31

4.5.3 Temperature Climate Data Range
The temperature sensor should be able to record within a range of -40°C to 80°C.
Rationale: The sensors should record temperatures in ranges that are in parallel with the
existing systems temperature ranges while maintaining the affordability of the system and
the availability of low-cost temperature sensors.
Importance: High importance as the system would be flawed and not meet the project’s
aim if it does not record temperatures in most environments and weather conditions.

4.5.4 Humidity Climate Data Accuracy
Humidity climate data should be recorded within ±5% accuracy.
Rationale: The recorded humidity should be accurate in parallel with the accuracy of the
existing systems while maintaining the affordability of the system and the availability of
low-cost humidity sensors.
Importance: High importance as the system would be flawed and not meet the project’s
aim if it does not record humidity values that are useful enough to be used to analyse the
climate.

4.5.5 Humidity Climate Data Range
The humidity sensor should be able to record within a range of 0-100%.
Rationale: The sensors should record humidity in ranges that are in parallel with the
existing systems humidity ranges while maintaining the affordability of the system and the
availability of low-cost humidity sensors.
Importance: High importance as the system would be flawed and not meet the project’s
aim if it does not record humidity in most environments and weather conditions.

4.5.6 Concurrent Climate Sensor Nodes
The system should be able to handle between 1 to 10 climate sensor nodes within or
around a single location or house.
Rationale: The system should be more modular than the existing systems while
maintaining good performance within the network and in the system storing the climate
data.
Importance: High importance as an aim of the project is modularity and not handling
multiple sensor nodes in a single location would make the system flawed.

4.5.7 Climate data storage duration
The system should store a user’s climate data for at least 6 months from the recording of
that data.
Rationale: The system should store climate data long enough for historical data trends to
be analysed and for data trends to be understandable for users, while ensuring that the
database does not become too large or has bad performance.
Importance: Medium importance as not meeting this requirement would only affect the use
of the historical data viewing features and not the viewing of recent climate data.

4.5.8 Sensor Recording Frequency
The sensor recording frequency should be as often every 5 minutes.
Rationale: The system should be able to record at a frequency that is useful and recent
enough for users to make decisions based upon this data while maintaining the sensor
node’s battery life specified in non-functional requirement 10 and keeping the frequency
inline or more frequent than existing systems.
Importance: High importance as out of date data would not be useful to users and would
affect the suitability for the main aim of viewing current climate data.

32

4.5.9 Sensor Recording Frequency Consistency
The sensor recording frequency should be consistent with equal lengths of time between
each time the sensor records data.
Rationale: The system should be able to record consistently as it would make the climate
data trends difficult to understand and analyse if the intervals that the data was recorded at
were different at each recording interval.
Importance: High importance as an inconsistent system would be confusing for users and
meaning the system would only meet the project’s aim of viewing current climate data
some of the time.

4.5.10 Sensor Battery Life
The sensor nodes should have a battery life of at least 2 months before having to have
their batteries replaced or recharged.
Rationale: The sensor nodes should be able to be left without interaction for a reasonable
amount of time while balancing the affordability of the sensor nodes.
Importance: Medium importance as the system would still be functional with a short sensor
node battery life but would have limited usability and affordability due to the need to
replace or recharge batteries.

4.5.11 System Affordability
The system should be more affordable than existing solutions with the final system costing
under £100 to implement.
Rationale: The existing systems are expensive, and the project’s aim is to be more
affordable and modular so a lower cost for the initial system is important and should be
lower than the existing systems.
Importance: High importance as affordability is an aim of the system and the main
limitation of the existing systems.

4.5.12 Installation Usability
Once the system has been built it should be easy to implement in a different location
without technical changes or technical knowledge of the system.
Rationale: Having a system that requires technical changes during installation would limit
the flexibility of the system and its usefulness for end users that would not have specific
technical knowledge of this system.
Importance: Medium importance as the system would still be functional, but less usable
than existing systems that only require limited technical knowledge to pair their sensors
and base stations to their Wi-Fi and to position the sensor nodes.

4.5.13 Maintenance Usability
The system should be simple to maintain once implemented, without requiring technical
knowledge.
Rationale: Having a system that requires technical changes after installation would limit
usability by end-users that would not have the specific technical knowledge of the system.
Importance: Medium importance as the system would still be functional, but less usable
than the existing systems that only require battery replacing or the systems that are
completely independent as they are recharged through integrated solar panels.

4.5.14 Sensor Node Distance
The sensor nodes should be able to send the climate data while within 100 un-obstructed
metres of the device that makes the climate data viewing on the website.
Rationale: The sensor nodes should be placed in a variety of locations within the local
area, while being able to communicate with the data storage location. 100 metres in best

33

conditions was selected to keep in parallel with the existing systems and due to the
modularity of this system, many sensor nodes will likely be used in different locations.
Importance: Medium importance as the system would still function if the max connection
distance is less than 100 metres, but the usefulness of the system would be limited if it is
attempted to be used in a larger area where the max connection distance is not sufficient
for the best placement of the sensor nodes.

4.5.15 User Data Security
The user data shall be kept secure from malicious or accidental access by individuals
other than the user that the data belongs to.
Rationale: Sensitive user data such as passwords should be kept secure as these being
accessible by other individuals would pose security risks if their password were used in
other systems.
Importance: Medium importance as it does not affect the system’s performance or
usability, but security should be important due to regulations such as GDPR and the
consequences of user data being retrieved by other individuals.

34

5. Design
This section describes the approach taken in designing the system including the design
methods and processes. The outcomes of each aspect of the system's design is then
provided along with analysis of its reasoning, suitability, and effectiveness.

5.1 Approach

The approach taken was to select hardware based upon the requirements, these
constrained the hardware suitable for the designs. The selected hardware is product
specific as compatibility between hardware components and software can only be
guaranteed once the specific hardware specifications. The design of the software
architectures was then completed based on the compatibility with the selected hardware.
This did mean that some hardware choices then needed changing when no suitable or
compatible software could be identified.

5.2 Overall Design

The overall design structure was selected based upon the evaluation of the requirements
and the possible service models that the system could offer. This resulted in the design
displayed in figure 2. The sensor nodes send their recorded climate data wirelessly to the
base station which processes the data via an API and puts it into the database, this lets
sensors be placed in ideal measuring locations with low hardware specifications. The base
station hosts a website via a web-server that provides users access to the climate data by
visiting the web-server’s IP address in a web browser. Though this does require port
forwarding the HTTP server on the Wi-Fi router so that the website can be accessed from
the internet, this could impact the system’s usability by less technical users. In this design
each implementation of the system is independent, this provides data privacy as all data is
stored locally within the base station. The base station provides management of multiple
sensor nodes and the dynamic addition and removal of the nodes.

Figure 2. System Structure

Two alternative designs were considered, the first design reflected an external service
model where a cloud service provides the database, API, and web-server, while the base
station only performs node management and sending the data to the API. This has
advantages including simpler multiple system installations, less technical knowledge
required for installation, and more affordable individual system installations. The second
design combined the chosen design with the local database, API, and website but with a
cloud service providing additional analysis and trends of the climate data. The chosen

35

design was selected over these alternatives as it provides a simple client-server model
that is completely local to the implementation providing more straightforward interactions
between components and greater data privacy. It fulfils all the requirements relevant to the
overall design. Additionally, it is better suited to a prototype implementation of the project
as it has fewer separate components and requires less communication between these
components. Though the affordability and more technical knowledge required by this
model are a necessary downside when compared to the disadvantages of the other
models. This model provides a good starting point and can be expanded to a second
alternative design to add additional secondary features such as climate data trends
analysis. Though there are some downsides such as the base station will require more
processing power and memory to handle multiple services, this will increase the cost of the
chosen device. Additionally, the design requires multiple separate installations if a user
wants to measure the climate in multiple geographical locations, as this requires multiple
base stations each with their own website, settings, data, and sensor nodes.

5.3 Sensor Device

5.3.1 Sensor Device Hardware Requirements
There are design requirements and system requirements that affect the choice of climate
sensor node hardware. This results in the main functionality of the nodes requiring working
indoors and outdoors, recording temperature and humidity, wireless communication to the
base station, battery power that lasts at least 2 months. Based on this functionality, the
following hardware components are required: low-power microcontroller, a wireless
communication module, temperature sensor, humidity sensor, and a waterproof case.

5.3.2 Sensor Device Microcontroller and Radio
The Adafruit Feather 32u4 433mhz RFM69HCW microcontroller was selected as it
supports interfacing with the sensors via GPIO and sending the data wirelessly via radio
communication to the base station. The 433mhz radio frequency was selected as it
requires no license and provides long-range. The radio module was also supported by the
potential devices for the base station. Additionally, this microcontroller supports battery
power and recharging via a micro-USB cable, this was not supported by alternative
devices with more power consumption such as a Raspberry Pi. While separate
microcontroller and radio modules were considered they added additional costs and
complexity. Other wireless communication technologies were not considered such as Wi-
Fi and Bluetooth due to the high-power consumption and short ranges provided by them,
respectively. The radio provided supports ranges of over 100 metres in best conditions,
while being packet-based and connectionless so the microcontroller and radio can sleep
without affecting communications. The microcontrollers with LoRa radios were considered
but have a range that may be too large for their application in this project so are not
suitable as this range could reduce consistency and increase the power consumption. The
32u4 and M0 variants for Adafruit Feather were considered but the 32u4 variant was
considered more suitable due to the lower power consumption caused by a slower
processor and less flash memory and ram. The microcontroller is Arduino compatible thus
supporting all Arduino libraries which will facilitate more efficient software design and
implementation, instead of fully bespoke development.

5.3.3 Sensor
The BME280 sensor was selected to provide the weather measurements as it measures
temperature, humidity, and atmospheric pressure while being interfaceable with the
microcontroller via i2c.This sensor was selected compared to alternatives as it provides
good accuracy and range within those specified by the requirements, though it has higher

36

costs while the other sensors had low costs with worse accuracies and ranges.
Additionally, the sensor has low power consumption and supports a sleep mode to ensure
the longer length of the microcontroller’s battery.

5.3.4 Microcontroller Battery
A 3000mAh lithium polymer battery was selected as it provided the best power to cost
balance of the researched batteries. Additionally, it supports the recharging functionality
provided by the microcontroller. Based on the microcontroller's power specifications the
battery also selected as its size potentially provides months of battery life.

5.3.5 Case
The Dri-Box FL-1859-200 IP55 Weatherproof Box (Dri-box, 2011) was selected to house
all the sensor node's hardware. This case is large enough to fit all components inside
without being too large to have ideal node placement and is waterproof while having holes
to ensure airflow which is required for the sensors to provide accurate measurements.

5.3.6 Electronics Layout
The electronics diagram in figure 3 shows the connections between the hardware
components.

Figure 3. Electronic layout of the sensor node

5.3.7 Microcontroller Software
As the microcontroller is Arduino compatible it can take advantage of the many libraries
available to facilitate component interfacing and improve the implementation efficiency. It
supports the C language among alternatives such as MicroPython. The flowchart of the
software is in figure 4, this is required to manage radio communication with the base
station, retrieve measurements from the sensors, send measurements to the base station,
and sleep when not required.

37

Figure 4. Flowchart of the sensor nodes

38

5.4 Base Station

5.4.1 Base Station Hardware Requirements
The base station is required to communicate with the sensor nodes, host the database,
website and API while having a connection to a Wi-Fi network. Thus, the base station
needed a small single-board computer and the radio module used by the sensor nodes.

5.4.2 Base Station Computer
A Raspberry Pi 3 A+ was selected as it provides the processing power, memory and
storage required to host the software along with the radio interfacing and Wi-Fi connection.
A microcontroller was not possible due to software requirements, this also meant that the
Raspberry Pi Zero W was not suitable due to it having half of the computing power
available with the 3 A+. Additionally, the Pi 4 was not considered as it had higher costs
and computing power that was too high for the software requirements.

5.4.3 Radio
The 433mhz RFM69HCW radio module was chosen as the sensor nodes and base station
require the same radio module and frequency to communicate, this module can interface
with the Raspberry Pi over SPI.

5.4.4 Case
Any case that could fit the Raspberry Pi and radio module was suitable. Thus, the Therpin
DIY Waterproof Electronic Junction Box (Therpin, 2017) was selected as it provides the
space required to house the hardware, though it did not require waterproofing it helps
ensure that the components are protected.

5.4.5 Electronics Layout
The electronics diagram in figure 5 shows the connections between the base station
hardware components.

Figure 5. Electronic layout of the base station

5.4.6 Operating System
The Raspberry Pi will use the Raspbian operating system as it ensures compatibility with
the hardware while having slightly higher computing power required than alternative
lightweight Linux distributions.

39

5.4.7 Required Software Subsystems
The software will consist of the following subsystems, sensor node communication
manager database, API, Wi-Fi connection management, and a web-server to provide
network access to the API and website. These designs have been given their own sections
due to the many design choices and subsections used. The API design is described in
section 5.6, the database in section 5.7, and the website in 5.8.

5.4.8 Sensor Node Communication Manager
The communication manager communicates with the sensor nodes to process initialisation
requests, tracking the currently active nodes, receiving the climate data, and then send
data to the API, the logic flowchart of the program is shown in figure 6.

Figure 6. Flowchart of sensor node communication manager

40

5.4.9 Web-server
The web-server is required to host the website and API so that they are accessible within
the base station's Wi-Fi network and on the internet. The selected technology should be
suitable for the Raspberry Pi and not cause large additional overheads on the CPU and
RAM. Additionally, the Web-Server is not required to handle large volumes of requests due
to the limited number of potential users concurrently accessing the web-server

5.4.10 Wi-Fi Manager
The Wi-Fi manages which Wi-Fi network the base station is connected to, this is required
so that the user can input their local Wi-Fi network during initialisation by creating a Wi-Fi
hotspot using a mobile phone which the base station initially connects to. The logic of this
program is shown in figure 7.

Figure 7. Flowchart of the Wi-Fi manager

5.5 Radio Protocol

5.5.1 Protocol Requirements
A protocol was designed to facilitate packet-based radio communication as wireless
communication is required between the base station and the sensor nodes. This protocol
is needed to ensure the correct handling of handshaking, collisions, and data integrity
errors.

41

5.5.2 Packet Structure
To improve implementation efficiency, the LowPowerLab RFM69 radio library
(LowPowerLab, 2020) is used to provide an existing packet structure. This structure has a
total packet payload size of 65 bytes, with 4 of these being used by the header. This
leaves 61 bytes for the main data, this is due to the limit for AES based encryption, which
is supported by the library, the packet structure is shown in figure 8.

Figure 8. LowPowerLab RFM69 packet structure (LowPowerLab, 2013)

5.5.3 Error detection
The protocol will use error detection to ensure that packets are valid, as corrupted data
could cause issues with software in the sensor nodes and base station, additionally,
inaccurate measurements could cause misunderstandings in the weather trends. The
LowPowerLab provides a cyclic redundancy check (CRC) which will be used to verify the
integrity of the packet data. If a CRC fails or an acknowledgement has not been received
the protocol will attempt to retry 3 times to see if a successful communication can be
completed.

5.5.4 Packet Collisions Handling
As the system handles multiple sensor nodes, the protocol is designed to avoid packet
collisions as the base station can only receive one packet at a time due to the limitations of
radio communication. Multiple sensor nodes simultaneously communicating with the base
station would cause interference and corrupt packets. Due to this a time period allocation
system has been designed so that sensor nodes shouldn’t send packets at the same time.
This uses time periods allocated to each sensor node so that they only send their climate
data during their time period, thus collisions are avoided. This was selected due to the
ease of implementation and scalability while being suited for the quick transmission times
and limited packet numbers for the climate data. The nodes are assigned time periods by
the base station once an initialisation request has been received from the node, this allows
the base station to track allocated time periods. The base station then uses the time
periods to generate the number of seconds the microcontroller will sleep for until it wakes
and measures the climate. The sensor nodes will consider the time taken to complete
other actions such as retrying sending data and retrying sensor data collection when using
the milliseconds till the time period before sleeping.

5.5.5 Protocol Data Units
A set of protocol data units (PDU) were designed to standardise the packets across
different devices, these have been listed individually with their packet structure.

42

5.5.6 Ack PDU
The acknowledgement PDU is used to send acknowledgements when a packet has been
received to ensure that the sender is aware the packet has been received, thus the packet
includes no main payload data.

5.5.7 Climate Data PDU
This PDU is used to send the climate data and thus requires most of the packet to be
reserved for the measurement types and values, the structure is shown in table 2.

Packet
section

Battery
Voltage

Packet
Type

Climate Data

Section size 7 Bytes 4 Bytes 50 Bytes

Table 2. Packet structure of the climate data protocol data unit

5.5.8 Initialisation PDU
This PDU is sent to the base station by a sensor node to request the data required for the
node to start its measurements, this only requires the packet type as shown in table 3.

Packet
section

Packet Type Empty Padding Data

Section size 4 Bytes 58 Bytes

Table 3. Packet structure of the initialisation protocol data unit

5.5.9 Time-Period PDU
As time-periods are used to inform sensor nodes when they should send their next
measurements, this PDU is used by the base station to send the milliseconds till the
measurement time, this is required as the microcontrollers have no date or time
synchronisation and must rely on the base station. The packet structure is shown in table
4.

Packet
section

Packet Type Start Time

Section size 4 Bytes 9 to 16 Bytes

Table 4. Packet structure of the time-period data unit

5.5.10 Node ID and Time Period PDU
This PDU is used to assign the sensor node a unique identifier and its initial measurement
time once an initialisation request has been received, the structure is shown in table 5.

Packet
section

Packet Type Start Time Node ID

Section size 4 Bytes 9 to 16 Bytes 4 Bytes

Table 5. Packet structure of the node ID and time period data unit

43

5.5.11 Exchange sequences
Exchange sequences have been described to ensure that specific packet sequences are
followed between the devices, these are shown in figure 9.

Figure 9. Radio packet sequences

5.6 API

5.6.1 Design approach
The API must interface with the database and act as a layer above the database by being
able to create, read, update, and delete data. Based on the requirements and overall
design it is required to handle requests internally from the base station's radio and Wi-Fi
manager programs, while also handling requests resulting from users interacting with the
website and requests from any connected automation services. While this could be
provided by independent APIs each with limited functionality for their use case, it is more
effective to use a single API to reduce complexity and processing overheads.

44

5.6.2 API architecture
The API endpoint design follows the REST architecture as it provides a consistent
structure and constraints that ensure good performance and logic. This was selected as
state is not required for any of the endpoints to achieve their functionality with most
performing CRUD operations, additionally, it helps reduce the memory requirements. Due
to the REST design constraints, the endpoints will need to provide a uniform interface, act
as client-server communication, while being a layered system that is cacheable.

5.6.3 API Data Format
The API will receive and return JSON data across all endpoints as it provides easy to
access hierarchical data structures that are similar in structure to the data in the database.
JSON data can be easily constructed and read by programming languages using existing
libraries.

5.6.4 Endpoint Structure
The endpoints have each been designed with a detailed documentation style to ensure
that each endpoint can be implemented correctly due to the number of success and error
possibilities. An overview of the endpoints as has been provided in table 6, with the full
documentation in Appendix E.

Use of the RESTFUL architecture means that multiple endpoints will exist for some URLs
as different types of requests can be performed based on the HTTP request type used.
The post endpoints require valid JSON data to be sent as the requests body, while the get,
patch, delete endpoints will use URL query strings to receive additional request
configurations. Additionally, some endpoints require data to be placed in the URL such as
the sensor ID when using the get sensor endpoint, these have been displayed in braces
along with a variable name representing the required data.

Name Type Authenticatio
n Method

URL

Authenticate user Post None /api/login

Logout access
token

Post JWT /api/logout/access

Logout refresh
token

Post JWT /api/logout/refresh

Refresh access
token

Post JWT /api/token/refresh

Add new sensor Post API key /api/sensors

Get all sensors Get JWT /api/sensors

Delete all sensors Delet
e

JWT /api/sensors

Update sensor Patch JWT /api/sensors/{sensor_id}

45

Get sensor Get JWT /api/sensors/{sensor_id}

Delete sensor Delet
e

JWT /api/sensors/{sensor_id}

Sensor Data Setting Post API key /api/sensors/{sensor_id}/climate-data

Sensor Climate
Data Retrieval

Get JWT /api/sensors/{sensor_id}/climate-data

Sensor Climate
Data Deletion

Delet
e

JWT /api/sensors/{sensor_id}/climate-data

Account Creation Post JWT /api//account

Account Updating Patch JWT /api/account

Account Details
Retrieval

Get JWT /api/account

Password Reset Get JWT /api/account/actions/change-password

Next Available
Sensor ID

Get JWT /api/sensors/actions/next-available-
sensor-id

Settings Retrieval Get API key /api/base-station-settings

Table 6. Overview of API endpoints

5.6.5 Authentication
The API requires two methods of endpoint user authentication, the first is use of an API
key and will be used in the endpoints used by the internal subsystems, the second is
JSON web tokens(JWT) which will be used by endpoints used by the website and
connectable services. This is required so that the radio and Wi-Fi manager programs can
access the API without knowing the user's credentials. The JWT authentication method
was used as it provides users with tokens that give them access to the endpoints, these
tokens can be configured to have limited time and be manually revoked. These tokens are
provided once the user has provided the valid email and password to the login endpoint,
they are then given an access token that provides access to the restricted endpoints.
These tokens are then configured to last 30 days or will be revoked when a user chooses
to logout. This method is stateless as all tokens are stored in the database and thus
compatible with the RESTFUL architecture of the API and provides good security as the
tokens can be safely stored client-side. The alternative method was Cookie-based
authentication, but this was not suitable as it requires the API to use state which is not
possible in a RESTFUL compliant API.

5.7 Database

5.7.1 Database Architecture
The database provides non-volatile storage of the climate, sensor node and user data as
specified by the requirements. A SQL or NoSQL database could store this data but an
SQL database has been selected to ensure compatibility with the Raspberry Pi and

46

Raspbian OS used in the base station as none of the compatible NoSQL databases
researched provided the date support and complex queries required.

5.7.2 Database Structure
The database structure consists of 5 tables with one to many relationships as shown in
figure 10.

Figure 10. Database Entity Relationship Diagram

The data types and sizes used by each of the tables were selected based on expected
values that could be stored within it during normal use of the system. The main choices
involved using short strings to limit the size of the databases and using float values for
sensor data measurements as all potential measurement types found in the requirements
background research could be represented by float values. The full choice analysis and
justification have been included in Appendix F.

5.7.3 Password Hashing and Salting
The passwords are hashed using the bcrypt algorithm, this ensures that the only the user
knows the plain text of the password with only the hashed password being stored. In the
login API endpoint, the user’s input password is hashed and compared to the hashed
password in the database. Alternative hashing algorithms including PBKDF2, Scrypt and
WHIRLPOOL were considered, while older and bypassed algorithms such as MD-5 and
SHA-3 were not.

Additionally, salting is then used with the hashing function as a string is added to the
password string before being put into the database. This increases the complexity of the
hashed password string, this increases system security. Only one salt string is used as
only one user account exists, this will be generated by the hashing library used in the
implementation.

47

5.8 Website

5.8.1 Website Architecture
The website provides the sensor node management, climate data viewing, and
configuration options as per the requirements. This uses a modern client-side framework
to provide single-page-app (SPA) and model-view-controller (MVC) functionality. This
helps ensure good usability as page navigation is short as it is completed locally with the
Web-Server only providing the root application code to the browser. This was selected
when compared to plain JavaScript client-side rendering and server-side rendering. Using
plain JavaScript would significantly increase the development time required and add
unnecessary complexity. Server-side rendering would have required the web-pages to
refresh when users complete interactions such as changing the date range for the
historical climate data graphs, these require new data from the API once initiated. This is
not user-friendly, as in the SPA all data is loaded from the API and can be displayed
without refreshing. All website technologies provide mobile, desktop and laptop support,
with SPA having the closest experience to mobile applications. Additionally, the use of
MVC is suited to the data-focused use of this website as the UI can be easily updated
once new data is received from the API.

5.8.2 Sitemap and Page Hierarchy
Based on the website requirements the following pages and functionalities are needed:
login page, register page, settings page, reset password, sensor node management list,
recent climate data displaying, and historical climate data visualisation.
While the functionality could exist in individual pages, a dashboard-style UI has been
designed to provide multiple functionalities while reducing the number of pages required,
and the time and complexity of implementation.

A sitemap was designed to show the page hierarchy, this reflects the low number of
individual pages required by the design.

Figure 11. Website sitemap with page hierarchies

48

5.8.3 UI Design
Website's user interfaces were designed based on the pages identified in the sitemap by
using Adobe Experience Design. This tool provides user interface designing functionality
with features including reusable components and smart resizing providing increased
efficiency when designing UI components that are used in different contexts. Mobile and
desktop designs were completed to ensure good usability in the mobile user interface with
larger inputs and increased element spacing to avoid miss-presses. These designs were
based on the UI elements established within wireframe and high-level style sheets, this
detailed the text styles, colours, shadows, and the different states for the interactive
elements.

Initially, wireframes were designed for each page to give an outline of the page's structure
and content. This facilitated iteration of the interfaces to ensure that all required
functionality was designed with good usability. These wireframes only considered the
layout, text content, interactable elements and grayscale shades. Figures 12 and 13 give
an example of the created wireframes, with the full wireframe designs available in
Appendix F.

Figure 12. Desktop dashboard wireframe UI design

49

Figure 13. Mobile dashboard wireframe l UI design

High-level user interface designs were created from the wireframes, these expanded the
designs to contain the final colours, icons, images, and complex details such as shadows.
Figures 14 and 15 are examples high-level design with the all designs available in
Appendix G

Figure 14. Desktop dashboard high-level UI design

50

Figure 15. Mobile dashboard high-level UI design

51

6. Implementation
This section describes the implementation decisions and the reasoning for choosing them,
including the implementation environments, algorithms, and data structures along with
other considerations such as usability. The source code for the system is available in
Appendix C.

6.1 Sensor Nodes

The first step of the implementation was creating the sensor nodes, their program was
written in C with the Arduino IDE (Arduino Software, 2020), this was selected over other
languages such as MicroPython due to a large number of libraries available within the
Arduino. This included the LowPower (LowPowerLab, 2018) and RFM69 (LowPowerLab,
2020) libraries that were used to minimise battery usage while the nodes are sleeping
between climate measurements. Additionally, the radio library provided a packet structure
as described in the design document along with useful processing functions. The
automatic power control provided by the radio library was used to reduce the radio
transmission power when the node is closer to the base station. The Adafruit Unified
Sensor Driver (Adafruit, 2020) and Adafruit BME280 (Adafruit, 2020) libraries were used to
configure and read data from the BME280 sensor, as well as providing a forced
measurement mode to reduce power usage while the node is sleeping. EEPROM was
used to store the node ID when the node is powered off, this gives permanent storage with
a limited number of reads and writes, but it supports enough that restarting the node is
insignificant.

6.2 Base Station

The next step involved creating the radio communication manager, API, and database.
This started with setting up the Raspberry Pi, along with configuring the Raspbian
operating system that was selected for compatibility with the required hardware and
software. The radio module was connected via GPIO pins and is controlled by a Python
program that handles messages received from the sensor nodes, it also tracks the active
nodes and manages the node spacing as designed in the radio protocol. The algorithm
used to assign the measurement time-periods for the sensor nodes ensures that the nodes
are spread out across the measurement time-period to reduce the likelihood of radio
packet collisions. All python code within the implementation was written using PyCharm
(JetBrains, 2019), with pip (Python Packaging Authority, 2020) to install Python libraries,
and the venv module was used to create virtual environments so that the libraries are only
available to each of the python programs. Next, the Apache web-server was implemented
to serve the API and website, this involved setting up the Web Server Gateway Interface
(WSGI) program to forward web-server requests to the API application. Apache was used
as the Flask development server is not intended for use in production environments.
Additionally, a static IP was configured to ensure that the API and website IP address is
consistent regardless of the connected Wi-Fi network.

The API was built using Python 3 with Flask (Ronacher, 2020) providing a straightforward
program structure and integrations. The use of JSON data structures to represent objects
once received from the database facilitated straightforward API endpoint consumption by
other system components. The database was implemented using SQLite as it is an in-file
database with good performance and low memory usage. The SQL database enabled the
use of the flask-sqlalchemy library for object-relational mapping of the required database
data structures, this allowed for the quick creation and management of objects within the

52

database with straightforward interfacing within the API. Additionally, the flask-restful
(Bayer, 2019) library was used to provide a Restful API structure without manually
ensuring restful characteristics. To ensure the correct structure of data being sent to the
API the Marshmallow (Loria, 2019) library was used to validate the keys and values of the
JSON data, this also provided errors generated directly from the validation failures. The
user settings were stored as JSON strings as per the design, this allowed for multiple
settings values to be introduced over the implementation of the system’s functionality and
support new settings in the future. Additionally, this provided easy transport of the user’s
settings to the other components. The algorithms used in the API endpoints were
optimised to reduce the response time, this was a concern for the deletion endpoints which
perform a batch deletion on many objects and different tables at once.

The PassLib (Collins, 2019) library provided an implementation of bcrypt to hash the user’s
passwords and provide salt generation. To limit the access of the API endpoints to
authorised users the Flask JWT Extended (Gilbert-Bland, 2019) library provided an
implementation of JWT. The Flask-cors (Dolphin, 2019) library allows cross-origin requests
so that the website could consume the API. To parse dates the dateutil (Ganssle, 2019)
library was used, this provided management of timezone-naive and timezone-aware date
objects. Postman (Postman Inc, 2020) was used to test the API’s responses during
implementation, with the storing and configuration of many API requests.

The Wi-Fi manager used Node.JS to manage the base stations connection to the local Wi-
Fi network. This involves an algorithm based on the available networks and current system
status to select the correct network. This required changing the Rasbian’s operating
system to use network manager, this provides an interface to connect and disconnect to
networks. The node-wifi (Friedrich, 2019) library was used to implement this interface.

The Apscheduler (Grönholm, 2019) library was used in the API and radio program, and
Node intervals in the Wi-Fi manager to schedule the running of functions at intervals in the
background. The wifi manager and radio program both retrieve the user’s settings at
regular intervals via HTTP requests to the API; this ensures that they stay up to date with
the settings used in the API, database, and website. Though this results in unnecessary
communication when the settings have not changed, instead event-based communication
should have been used to ensure that the updated settings are received by the other
components immediately after they have been changed. This could have been achieved
using web sockets.

6.3 Website

The final step was creating the website, this involved using Vue.JS (You, 2019) to create a
SPA with vue-router (vuejs, 2020) providing local page routing without requiring the web-
server to provide multiple pages. Vuex (vuejs, 2019) was used to ensure that local and
global data structures remained separate while being easily accessible when required. The
user interface was built according to the final designs, though some changes were taken
when the existing design elements were inadequate such as the battery status indicators.
The website used the node package manager (npm Inc, 2020) to manage the libraries
used by the website. The initial files, folders, and plugins were set up using Vue CLI
(vuejs, 2019) which provides scaffolding functionality to speed up implementation, this
included the Webpack (webpack, 2019) config, development server, and code linting.
Additionally, the hot-reloading functionality was enabled allowing for the quicker testing of
components without requiring full page reloads to see code changes.

53

Many open-source libraries were used to speed up development. This included vue-
chart.js (Juszczak, 2019) to provide the climate data charts, Vcalendar (Reyes, 2019) for
the date picker component, Webpack for building JS, HTML, and CSS files based on
dependencies, Autoprefixer (Tidelift, 2019) to additional CSS rules to ensure compatibility
and usability across modern and older browsers, Date-fns (Koss, 2019) for date parsing
and date generation, Vue-Axios (Nguyen, 2019) for its interface to complex HTTP
requests, and Vue-toasted (Sadikeen, 2019) for creating and managing toast notification
components.

Additional implementation was carried out to ensure the usability of the mobile interface,
by following the greater element spacing and font sizes required to create easy to use
mobile web applications.

6.4 Difficulties Encountered

Some difficulties were encountered during the implementation, these were mostly minor
bugs that resulted in slower performance, unexpected data, or connection issues. Issues
were encountered during the apache web-server installation due to the specific
configurations required to host the API and static website files correctly. This included the
WSGI application requiring version configuration changes to run the correct language
versions, solving this required viewing the apache logs to identify the cause. Another issue
involved being unable to use the API endpoints that require user authentication, this was
due to the apache configuration stripping the auth header before it reached the WSGI
application, this was fixed by fixing the configuration. Changes were required to make the
web-server host the website on base station’s network IP address instead of a local or
specified IP, once the changes were completed the website and API were always
accessible from the base station’s static IP address. Another problem caused by IP
address was that the wifi manager and radio program required an additional endpoint to be
created that wasn’t in the designs, this endpoint provides the user’s settings if the correct
API key is specified, This changed resulted in two endpoints for the settings with one
requiring JWT authentication and the other using the API key, as the independent
programs cannot directly access the settings from the database or perform the JWT
authentication by proving the user’s email and password.

Performance difficulties were encountered during the API implementation, these required
fixing as the website interactions became delayed when deletion requests were made to
the API due to the time taken for a response to be retrieved. The largest issue was the bad
performance of the climate data and sensor deletion endpoints, as these would both delete
very large batches of climate data objects. This was fixed by batching the deletion
requests into a single call and ensuring that deletion cascaded to child objects within the
object-relational-mapping instead of manually deleting the parents and children. Another
difficulty involved bad performance with the historical climate data retrieval as all data
points were retrieved between the two dates, this caused very delayed requests of over 5
to 10 seconds due to thousands of nested objects being retrieved. This was fixed by only
retrieving every n rows of the climate data, this ensures that the same amount of data
points was retrieved for all date ranges and that spacing was even between the selected
intervals.

The database was originally designed to be a NoSQL database such as MongoDB
(MongoDB Inc, 2020), it was not until the database implementation that it was discovered
that there are no recent versions of MongoDB supported by the Raspberry Pi 3 A+. This
resulted in going back and changing the database design and plans for the database

54

interfacing with the API. Though this initially caused delays in the implementation, the later
implementation of an SQLite database was likely a better design decision.

An issue was encountered once the time zone of the Raspberry Pi changed from GMT to
BST, this caused inconsistencies with dates in the base station. The dates of the climate
data recordings were 1 hour behind the dates used in other parts of the radio program.
This was due to the open-source radio library providing packet dates that used the UTC
time zone without any time zone offsets. This was fixed by using time zone conversion of
the dates outputted by the radio library through the tzlocal library (Regebro, 2019), this
demonstrates the unexpected issues of using open-source libraries where there is limited
documentation and the source code has not been viewed.

6.5 Reflection on Implementation

In reflection, the implementation stage would have been more efficient if the Test Driven
Development (TDD) methodology had been followed as this would have ensured that
components successfully completed tests during development rather than waiting till the
testing stage to create the tests. The Storybook library would have reduced the time spent
refactoring poor code within the website into reusable and standardised components, as
some of the implemented components are too specific and not fully reusable without
modification.

55

7. Testing
This section describes the approaches taken to validate each stage of the project.

7.1 Requirements Validation

As the requirements were indirectly elicited, they were not verified or validated during the
requirements stage. But the questionnaire completed during the evaluation stage provides
some validation of the requirement importance for the system’s features, with this being
completed in sections 8.4 and 8.5.

7.2 Design Validation

The designs were not validated during the design stage, this meant that no user
suggestions were received and thus the designs and the implemented system reflect only
the author’s design opinions. The evaluation questionnaire was completed after the
implementation stage but did provide very favourable usability and suitability opinions on
the main website designs. Ideally, a full usability evaluation should have been completed
during the design stage to ensure that the designs were iterated and improved based on
user opinions. The results of the UI usability section questionnaire have been evaluated in
section 8.4.

7.3 Implementation Validation Approach

The approach for testing and debugging the system’s code involved using automated test
tools for unit and end-to-end tests across all the system’s components. This means that
the components tested were the sensor node, base station, API, database, and website.
For each component, the tests were designed based on the features provided by the
component and the requirements relevant to those features. These tests were separated
into unit and end-to-end test sections that each had their own test plans. The test plans for
all components include the test name, the description of what should occur for the test to
be successful and whether the test was successful. The test plans and descriptions of the
methods used to execute the test plans have been included below for each component,
finally, an analysis of the test results was completed to understand any limitations of the
methods used and the overall test results.

7.4 Sensor Node Testing

7.4.1 Approach
As the sensor node is a microcontroller with embedded code automated tests tools weren’t
possible. This meant that tests were completed with the base station active and a single
sensor node being used to initiate the test plans. The test plans created include all
features specified by the requirements that are provided by the sensor node, additionally
some non-functional requirements that provided tests.

While most tests simply required setting up the initial state required by the test plan,
performing an action then reviewing the result, some tests required different methods. This
included the calculation of the battery life of the sensor node for each measurement
interval. To do this a USB ammeter was used to measure the average amperes used by
the node over an hour for each device state (sleep, normal, radio sending). Using the
power consumption in each state and the time spent in each state the milliampere hour
(mAh) was calculated using an equation. The battery capacity was then divided by the

56

mAh giving the number of hours the device can be powered by the battery. This provided
the battery life results shown in table 7, with the calculation spreadsheet in Appendix H.

Measurement interval Battery Life (hours) Battery Life (days)

5 Minutes 5330 222

10 Minutes 6236.17 259.84

30 Minutes 7618.83 317.45

60 Minutes 8065.92 336.08

Table 7. Sensor node battery life

Another complex test was the maximum radio range test, this was completed in an open
area with no obstructions with a single node communicating with the base station. A
program was created for the sensor node that uses the same radio configuration as the
actual program to ensure accurate results. The program sent an initialisation packet every
5 seconds to the base station and flashed a built-in LED when an acknowledgement
packet was received, indicating whether the communication was successful. The results
for the test have been separated into different ranges from 1 metre to 100 metres as they
represent different use cases, additionally, wall penetration tests were completed to
ensure that there isn’t significant range or communication lost due to obstructions that will
occur when the system is used in a building.

7.4.2 End-to-end Testing
All tests apart from the 75 and 100-metre communication ranges tests were successful.
The sensor node test plans are in Appendix I Table 1.

7.5 Base Station Testing

7.5.1 Approach
The base station’s sensor node communication manager program was tested using the
pytest library with automated tests to confirm that each function returns the correct result
for various inputs. Automated tests were not completed on the wifi manager as the Wi-Fi
networks could not be mocked within the pytest code, instead manual tests were used to
confirm the functionality.

7.5.2 Unit Testing
All tests were successful, with the test plans for the sensor node communication and wifi
manager available in Appendix I Table 2.

7.6 API Testing

7.6.1 Approach
The API was validated through automated unit tests using the pytest library, this was
selected as it provided straightforward implementation into the flask endpoint structure
while providing more features and better support than the flask specific testing libraries.
The tests were created for each of the success and error states described in the API
design documentation. These tests evaluated whether the correct responses were
returned and the data in the database had been correctly modified according to endpoints

57

functionality. While all documented error states were tested, the API generates dynamic
errors for post requests that could not all be tested due to the potential number of tests for
each endpoint. This means that each missing field, incorrect data type, or incorrect value
range is tested, but combinations of each field are not tested as this results in too many
tests that cannot be feasibility implemented.

7.6.2 Unit Testing
All tests were successful, though some required fixes to succeed these were mainly due to
slight differences in the status messages provided by the endpoints when compared to the
documentation. The test plans are available in Appendix I tables 3 to 22.

7.7 Web-server Testing

7.7.1 Approach
The web-server hosts the API and static website files, the correct hosting of the API is
confirmed by the website’s end-to-end tests in section 7.9 as the website consumes the
API via the web-server. Thus, the only test for the web-server confirms that the static files
can be served by the web-server when the files URL is accessed by HTTP requests.

7.7.2 Unit Testing
The web-serving tests were all successful, with the test plans available in Appendix I Table
21.

7.8 Database Testing

7.8.1 Validation Approach
The database was tested using pytest (Krekel, 2020) as the Flask-SQLAlchemy library
was used to provide a python database interface. This meant that the correct creation,
updating, and deletion of rows in the database were tested through the models and the
methods provided by the interface.

7.8.2 Unit Testing
All tests were successful with the test plans available in Appendix I tables 23 to 27.

7.9 Website

7.9.1 Approach
The website was tested using automated unit tests to confirm the correct functionalities are
performed by each Vue component and helper function, additionally, automated end-to-
end tests confirmed that the website and API interact correctly.

The unit tests were implemented using Jest (Facebook, 2020) and vue-test-utils (vuejs,
2019), this allowed for the mocking of services and the shallow mounting of Vue
components to ensure that each component was tested in isolation. These unit tests
covered various component functionality including the correct displaying of data, correct
handling of component props and global state, and the correct handling of user
interactions. Alongside the unit tests, snapshot tests were created for each component test
scenario, these confirmed that the component outputs the correct HTML.

The end-to-end tests were created using the Cypress library (Cypress, 2020). This uses a
chromium browser to load the website, mimic user interactions and then confirm that
various page elements such as the HTML and page title matched the specified values.

58

This method ensures that components work together correctly once combined and that the
data provided by the API and database is successfully communicated. Initially, the
nightwatch library was used to implement the first few tests but this required more complex
test code to be written, thus the existing tests were converted to work with Cypress which
replaced nightwatch. As Cypress only supports Chromium the website was not
automatically tested with other browsers such as Firefox and Safari. Instead, manual
testing using the Browserstack (https://www.browserstack.com) website was used to
emulate the other browsers and confirm that the website worked correctly, this is a major
limitation of the method used.

7.9.2 Unit Testing
All unit tests were successful though some required changes to the component's code to
pass. The full test plans for each component are available in Appendix I tables 28 to

7.9.3 End-to-end tests
The end-to-end tests were successful and did not require any code changes to make the
tests pass; this was due to the earlier completion of the API and website unit-tests. The
test plans are in Appendix I tables 48 to 55.

7.10 Overall results

Overall, the tests designed based on the functional requirements were completely
successful. With most of the tests representing non-functional requirements were
successful apart from the sensor node communication range which was halfway to
providing the required range.
This means that not all requirements will be successfully satisfied by the system as
detailed in the evaluation section 8. Though the system’s code did require changes to
ensure test success, this demonstrates that using TDD during to write the tests before
code implementation would have been a better decision as rewriting code after the
implementation was completed was avoidable and may have resulted in bad quality code.
Additionally, there are several additional tests that were not designed or completed. Tests
of the accuracy and range of the measurements provided by the BME280 sensor
compared to trusted measurements conducted at the same time and location should have
been completed. As this was conducted by some of the papers found during the literature
research. The lack of automated tests in the website's compatibility with non Chromium-
based browsers should have been completed to ensure identical visuals and interactions
across modern browsers. This could have been completed using the Browserstack
automated testing tool which interacts with the website in a similar manner to the end-to-
end tests but with the advantage of being able to emulate popular browsers on desktop
and mobile devices.

59

8. Evaluation
This section describes the system's evaluation against the requirements including the
methods used and the outcomes.

8.1 Method

To evaluate the created system against the requirements, a questionnaire was used to
elicit user opinions on the features, usability, and suitability of the system for its aim. The
evaluation was then completed by comparing the requirements specification to the
questionnaire and test outcomes. This enabled evaluation of the more subjective
requirements such as the usability of the system, and the object requirements such as the
features provided by the system. The limitations of this method are that it relies on the
questionnaire being conducted well with no bias in the questions and answers available,
and on the tests being completed on all of the aspect’s components relevant to the
requirements and that these tests are designed well to be strict on when they succeed.
The complete analysis of the suitability and results of this method has been included in the
overall evaluation section 8.6.

8.2 Questionnaire

8.2.1 Questionnaire Design
A questionnaire was created to acquire the opinions of potential users of the system. This
questionnaire contained questions relating to the requirements of the system. The
questionnaire design has been included in Appendix J.

The questions were grouped by their context, resulting in questions on functional
requirements followed questions on non-functional requirements, then website UI usability
and suitable, and finishing with the overall suitability of the system. The types of the
answers used depended on the content and context of the question, this meant that yes/no
questions were used to provide exact answers, these were used for some website usability
questions, checkboxes were used to let the user provide any answers that apply for the
feature importance questions, Likert-scale questions were used to understand the usability
and suitability of the website UI, radio inputs were used for questions that had multiple
fixed answers, finally raw number inputs were used in the cost and node questions to elicit
the raw answers from the user instead of using number ranges. The website UI questions
displayed a screenshot or short video of the UI before the question and answers were
shown, this was used to not influence how the individual looks at the UI as showing the UI
after the question text may have introduced bias.

The questionnaire was provided to various potential users, this included individuals that
had no knowledge of weather systems, others that had heard but not used weather station
products, and individuals that currently or previously used weather station products.

8.2.1 Questionnaire Results
To analyse the questionnaire results, the responses of each question have been analysed
for trends and what these trends mean in the context of evaluation. The responses to the
questionnaire have been included in Appendix K. The question analysis was then included
in the evaluation of the requirement relevant to the question. To better understand the
response trends, the responses were grouped based on the response to the first question.
This resulted in three groups, group N for individuals that answered that they haven’t
heard of or used a weather station product, group K for individuals that had prior

60

knowledge of at least one weather station product, and group U for those that have used a
weather station product. In total 15 responses were given to the questionnaire, with 4
responses in group U, 4 in group K, and 7 in group N.

8.3 Evaluation Structure

Each requirement from the requirements specification has been listed along with the
evaluation of whether it has been satisfied by the system. These are grouped into
functional and non-functional sections. Finally, an overall evaluation has been created
based on the evaluation results along with the limitations of this evaluation method.

8.4 Functional Requirements Evaluation

8.4.1 Indoor Sensor Node Requirement
This requirement is satisfied as a multiple purpose node was implemented for indoor and
outdoor use as it uses a weather-proof case suitable for both purposes, this measures the
surrounding climate based on the connected sensor modules.

8.4.2 Outdoor Sensor Requirement
This requirement is satisfied as the multiple purpose node in “4.5.1 Indoor Sensor Node”
was intended for outdoor use as it uses an IP55 rated weatherproof case, this measures
the surrounding climate based on the connected sensor modules.

8.4.3 Sensor Node Temperature Recording Requirement
This requirement is satisfied as the sensor nodes use the BME280 sensor to measure
temperatures, with the tests confirming the functionality.

8.4.4 Sensor Node Temperature Units Requirement
This requirement is satisfied as the sensor nodes do record temperature measurements in
Celsius with the data stored as Celsius in the database, with tests confirming the
functionality. A setting is provided on the website that allows for the viewing of the
temperature data in Fahrenheit.

8.4.5 Sensor Node Humidity Recording Requirement
This requirement is satisfied as the sensor nodes use the BME280 sensor to measure the
atmospheric pressure of the surrounding climate, with tests confirming this functionality.

8.4.6 Sensor Node Recorded Data Requirement
This requirement is satisfied as though the sensor nodes do not directly record the time
and date along with the climate data measurements, the base station instead adds the
additional metadata including a datetime string to the climate data and sends it to the API
for storage in the database. The website retrieves the climate data from the database via
the API and displays the recent and historical data for users to view, with tests confirming
this functionality.

8.4.7 Sensor Node Identifier Requirement
This requirement is satisfied as the sensor nodes are assigned a unique ID by the base
station with this ID being generated by the API when a new node is added, with tests
confirming this functionality. This ID is then used during all communication and storage of
climate data to ensure the correct linking of the climate data to the sensor.

61

8.4.8 Additional Sensor Types Requirement
This requirement is satisfied as the nodes, base station, API, and database have been
implemented to handle any type of climate data being collected. This is demonstrated by
the BME280 providing pressure data which was not initially planned for. Though only one
sensor module is used per node, which means that multiple sensor modules per node
were not tested, though it should be completed in the future.

8.4.9 Multiple Sensor Nodes Requirement
This requirement is satisfied as the system was implemented to support up to 20
concurrent nodes and could be further modified to increase this limit, two nodes were
implemented and tested to ensure this requirement was met.

8.4.10 Sensor Battery Power Requirement
This requirement is satisfied as the sensor nodes were implemented with batteries to
provide power to the microcontroller and sensor modules.

8.4.11 Sensor Names Requirement
This requirement is satisfied as the sensor nodes are assigned user-defined names by the
website which provides a renaming functionality. Initially, the API generates placeholder
names with the sensor’s ID, though the user can change this at any time, with tests
confirming this functionality.

8.4.12 Climate Data Accessible by External Services Requirement
This requirement is satisfied as the API is accessible over the internet once port
forwarding has been completed, the connectable service can then use JWT or API key
authorisation with HTTP requests to consume the API endpoints. While the use of the API
by external services wasn’t tested or any external services implemented with the API,
there shouldn't be any reason why this won’t work.

8.4.13 Website Requirement
This requirement is satisfied as the website provided a dashboard with climate data,
sensor management, and configuration options, with tests confirming this functionality.
This is initially available over the local Wi-Fi network until port forwarding is completed this
makes it available over the internet. But is reliant on the user understanding and
researching how to port forward using their router.

8.4.14 Website Authorised Data Access Requirement
This requirement is satisfied as the API uses JWT authorisation for all endpoints meant for
external use or that concern user and climate data, API key authorisation is used for the
internal component communication though the endpoints that use this do not retrieve
sensitive information. This ensures that data can only be accessed if the user has logged
in with valid credentials, with tests confirming this functionality.

8.4.15 Website Desktop/Laptop Access Requirement
This requirement is satisfied as the website was accessed and tested with an automated
testing tool on a Chromium browser with desktop screen sizes, additional manual testing
was completed on Firefox and Safari to ensure the website is accessible on modern
browsers. The website will work on any modern browser due to polyfills that ensure
JavaScript backward compatibility though there may be some graphical differences due to
the differences in browser implementations. The questionnaire results identified that most
responders found the text easy to read on the desktop dashboard UI with all saying that

62

the purpose and content of it were easy to understand demonstrating the usability of this
UI.

8.4.16 Website Mobile Access Requirement
This requirement is satisfied as the website is accessible on mobile devices with the base
station’s IP address identically to the desktop version. A mobile interface was designed to
suit the smaller screen size and large spacing used to suit fingers. This interface makes
some interactions longer, such as the dashboard sensor selection, this is required to fit the
smaller screen. The mobile interface had automated tests completed with the automated
testing tool on a Chromium browser with mobile screen sizes, additional manual testing
was completed on Firefox and Safari to ensure the website is accessible on modern
browsers on real mobile devices. All questionnaire responders said that the purpose and
content of the mobile dashboard page and settings page were easy to understand. Though
the results were more mixed for mobile dashboard interactions and mobile navigation
functionality. The questionnaire comments identified that a more modern mobile navigation
method such as a bottom tab bar would be easier to use than the hamburger menu
implemented.

8.4.17 Sensor Node List Requirement
This requirement is mostly satisfied as the website shows the user’s nodes with their
name, battery status, view button, deletion buttons, and recent temperature and humidity
data, with tests confirming this functionality. As it does not provide a summary of all the
most recent climate data, users instead must view each node’s climate data to view recent
climate data with other data types such as the atmospheric pressure.

8.4.18 Historical Climate Data Visualisation Requirement
This requirement is satisfied as the website displays a graph for each of the climate data
types and the battery voltage over time, with tests confirming this functionality. This graph
is based on a user-selected date and time range with the default being 1-day, pre-set date
periods are also provided. A date range input is provided that allows users to select any
date range. Most questionnaire responders said that the data selection functionality was
very suitable though a minority said it mostly or partially suitable. This may have been due
to the mix of bespoke pre-set period buttons and the date range input from an open-source
library that is inconsistent in design though some configuration was used, this was clearly
not enough to ensure consistency in user interaction.

8.4.19 Recent Climate Data Requirement
This requirement is satisfied as the website displays the temperature and humidity for
each node in the list, with tests confirming this functionality. When a node is selected a box
displays the most recent values for each type along with the daily highs and lows, and the
trend compared to the previous value. The high, lows and trends were not required but
provide additional analysis that helps the user understand the data being displayed rather
than the raw measured values.

8.4.20 Website Temperature Units Requirement
This requirement is satisfied as the website has a configuration to choose whether to
display the recorded temperature in Celsius or Fahrenheit, this only affects the displaying
on the website and not stored data, with tests confirming this functionality.

8.4.21 Climate Data Deletion Requirement
This requirement is mostly satisfied as the website provides a button in the sensor node
list to delete the climate data for each node individually, with tests confirming this

63

functionality. But the questionnaire results identified that users were split on the usability of
this feature as only half answered that it was very suitable with other selected mostly and
partially suitable demonstrating that future work is required in improving the usability of the
UI used for this feature. Additionally, 3 responders identified that a deletion confirmation
functionality would help fix the usability problems.

8.4.22 Sensor Deletion Requirement
This requirement is mostly satisfied as the website provides a button in the sensor node
list to delete each node individually, with tests confirming this functionality. But similarly, to
“4.5.21 Climate Data Deletion” the questionnaire results identified an identical split on the
feature usability with all responders providing the same answers to the other question. The
deletion confirmation functionality would also help fix the usability problems of this
functionality.

8.4.23 Website Sensor Naming Requirement
This requirement is satisfied as the website provides a togglable text box for each sensor
in the node list that allows for the renaming of sensors, with tests confirming this
functionality. The questionnaire identified that the vast majority thought this method of
implementation of the feature was suitable, though 26.7% responded mostly suitable, thus
there is additional work required to improve the UI of this feature. One responder
commented that better distinguishing between the editable node name and the node ID
displayed next to it would make it clearer to understand.

8.4.24 Login Requirement
This requirement is satisfied as the website requires users to provide the valid email and
password that matches the stored credentials to be able to access any pages other than
the register, login, and home pages. A login page is provided that allows users to login via
a form with email and password inputs, with tests confirming this functionality. The
questionnaire results identified that all responders found the login page suitable for the
login functionality.

8.4.25 Register Requirement
This requirement is satisfied as the website requires that the user registers an account
before they can access the rest of the website other than the login and home pages. A
register page is provided that takes in the email, password and confirm password via a
form which registers the user once completed, with tests confirming this functionality. The
questionnaire results identified that all responders found the register page suitable for the
register functionality.

8.4.26 Forgot Password Requirement
This requirement is satisfied as the website provides a page that allows users to reset their
password using a reset token provided on registration or when already logged on and the
new password, with tests confirming this functionality in both scenarios. This was chosen
as the independent system design meant than an email account for sending the reset link
could not be safely kept in the base station. Thus, the reset token method was used, this is
overall less effective, but a necessary sacrifice given the security and privacy
requirements. The questionnaire results identified that all responders found the reset
password page suitable for the forgot password functionality.

8.4.27 Add Sensor Requirement
This requirement is not satisfied as the website does not handle the additions; this is
instead completed when the sensor node sends the initialisation request to the base

64

station. This was chosen as a website interface for the addition would have required
knowing the node ID before it had been generated requiring additional functionality to link
the new sensor node to the node created on the website.

8.4.28 Sensor Status Requirement
This requirement is satisfied as the website displays the battery voltage in a graph over
time, with tests confirming this functionality. Additionally, the most recent status based on
voltage ranges is shown for each sensor in the node list. Though one comment on the
questionnaire said that the battery level should be displayed in a graphical format such as
battery indicator icons.

8.5 Non-functional Requirements Evaluation

8.5.1 Recent Climate Data Requirement
This requirement is satisfied as the climate data processing after measurements is minimal
and thus is done in under 5 seconds depending on if radio communication retries are
required. The website dashboard retrieves the most recent climate data from the API every
minute, this ensures that the data is always available after one minute.

8.5.2 Temperature Climate Data Accuracy Requirement
This requirement is not satisfied as the BME280 records to ±1.0°C temperature accuracy
based on its hardware specifications rather than the ±0.5°C accuracy required. This was
deemed a necessary sacrifice for affordability in each node as the sensors providing
±0.5°C or lower were more expensive and did not provide the humidity measurements as
required. Though temperature accuracy tests were not completed to ensure that the
specifications provided were correct.

8.5.3 Temperature Climate Data Range Requirement
This requirement is satisfied as the BME280 provides temperature measurements
between -40°C to 85°C based on the hardware specifications provided, this is slightly
better than the range of -40°C to 80°C required. Though temperature range tests were not
completed to ensure that the specifications provided were correct.

8.5.4 Humidity Climate Data Accuracy Requirement
This requirement is satisfied as the BME280 provides humidity measurements in the range
of ±3% based on the hardware specifications, this is more accurate than the ±5% accuracy
required. Similarly, to the temperature data, accuracy tests were not completed to ensure
the specifications were correct.

8.5.5 Humidity Climate Data Range Requirement
This requirement is satisfied as the BME280 provides humidity measurements in the range
of 0% to 100% based on the hardware specifications provided, this is slightly identical to
the range of 0% to 100% required. Though humidity range tests were not completed to
ensure that the specifications provided were correct.

8.5.6 Concurrent Climate Sensor Nodes Requirement
This requirement is satisfied as the system can handle between 1 to 20 nodes per
individual installation which is more than the required 1 to 10 nodes. Though only two
nodes were implemented due to cost limitations. The number of nodes is only currently
constrained by the amount of time given per node in their time periods provided by the
radio protocol. Thus, the concurrent nodes limit can be increased if the time periods are
shortened though this may result in a higher chance of radio packet collisions.

65

8.5.7 Climate Data Storage Duration Requirement
This requirement is satisfied as the database can store permanently depending on the
storage space available, though the API deletes any climate data older than 6 months
each day. This meets the 6 months of storage required and provides the potential for the
limit to be increased.

8.5.8 Sensor Recording Frequency Requirement
This requirement is satisfied as the sensor nodes can record measurements at 5, 10, 30,
or 60-minute intervals as selected by the user. This meets the minimum 5-minute intervals
required.

8.5.9 Sensor Recording Frequency Consistency Requirement
This requirement is mostly satisfied as the sensor nodes will record within the 20 seconds
following their assigned time period due to the node sleeping not being time perfect. This
is not completely consistent with equal lengths of times between measurements as
required. But the user should not notice the data being recorded seconds after expected.
Though the message used does ensure that the nodes are synchronised with a new sleep
duration after each measurement to stop any long-term drifts in measurement frequency
consistency.

8.5.10 Sensor Battery Life Requirement
This requirement is satisfied as the nodes are estimated to last up to 222 days on battery
for the 5-minute interval with the 60-minute interval providing up to 336 days of battery life.
This is considerably better than the 2 months of battery life required. Though these
numbers were calculated based on the node power consumption rather than being tested
months as this was not possible in the time frame available.

8.5.11 System Affordability Requirement
This requirement is not satisfied as the final system with two sensor nodes and the base
station costing £161.55 to be implemented as of December 2019. This is considerably
more than the £100 cost required. Though implementation of a single sensor node and a
base station costs only £102.62 which is closer but does not reflect the modularity aim
which is the key objective of the project.

8.5.12 Installation Usability Requirement
This requirement is mostly satisfied as only one technical step is required to install the
system rather than the no technical knowledge required for installation. This involves port-
forwarding the base station's IP address which will require different levels of technical
knowledge depending on the user interface provided by the user's Wi-Fi router. Though
the results of the questionnaire indicated that only 40% of the responders said that this
was a suitable step for installation this was mainly due to the majority of group U
answering that it was suitable with the majority of the other groups answering that it
wasn’t.

8.5.13 Maintenance Usability Requirement
This requirement is satisfied as the system does not require technical knowledge to use
after installation during normal system use. As all configuration is provided by the website
and all programs are automatically run once powered on. But any bug fixes and new
features cannot be added to the website without having the user add the updated files onto
the base station's PI via an SSH connection, this concern for future improvements but
wouldn’t be required for the current normal system use.

66

8.5.14 Sensor Node Distance Requirement
This requirement is not satisfied as the maximum range tests identified that the max
communication distance is 56.5 metres instead of the 100 metres required. This was
completed using the current hardware and configuration in an open area with no
obstructions. This may be improved in future work through additional radio antenna
hardware or different radio configurations. Though the results of the questionnaire resulted
in an average of 44 metres when users indicated what they thought was a suitable max
communication range, thus the current range may be suitable for many users.

8.5.15 User Data Security Requirement
This requirement is satisfied as all data is stored locally in the base station, with this data
only be accessible by directly accessing the Raspberry Pi or successfully completing the
JWT authentication used by the API endpoints that concern user and climate data. The
JWT authentication requires the valid password and email to be input, with the password
being hashed and salted in the database so that if a malicious actor accessed the
database they would not be able to retrieve the raw text password. Thus the user data is
secure from access by individuals other than the user, with the only concern being that a
malicious individual with access to the user’s browser which has logged in, this would give
them access to the JWT access token required for the API authentication though this is
unlikely to occur.

8.6 Overall evaluation

The evaluation identified that the system’s functionality was successfully implemented
according to the functional requirement specification, though some changes how they
were implemented did occur without affecting the functionalities purpose as evaluated by
the tests. The majority of non-functional requirements were satisfied apart from the
maximum node range, affordability, and temperature accuracy though these are important
requirements the results of the questionnaire indicated that most potential users would be
satisfied by the node range and accuracy provided by the system. But the system’s cost
and node costs were still higher than the specification and questionnaire results, thus this
is a major focus for future work.

Additionally, there were issues in which the questionnaire was designed that may have
affected the usefulness of the results for the evaluation. The questionnaire only received 4
responses from users of existing weather station products, additional responses should
have been retrieved by interacting with weather station communities. This should have
provided a better understanding of their priorities and issues with existing products and
how this affects their opinions on the system. The requirements used in the evaluation
were not validated during the requirements stage with only some of the questions
providing importance and value validation of the requirements. Additionally, responders
had not been given hands-on experience with the hardware and website, with their only
experience of the system coming from the screenshots and videos in the questionnaire.
Hands-on user evaluation sessions should have been completed, as the website is
accessible over the internet and the credentials could have been provided. This would
have given better results as users may not be able to give full opinions on UI usability until
they have directly interacted with the website. After the questionnaire, some respondents
noted that additional background knowledge should have been provided as they did not
know the features of existing products such as the costs. A product overview could have
been provided but this may have influenced their answers once they found out the system
was designed to improve upon the limitations of existing products.

67

9. Conclusion
9.1 Conclusion
Overall, the project was mostly successful based upon the evaluation against
requirements, but additional work is required for improving the system and evaluating its
use within integration with smart home systems. While the system has the required
features and most of the non-functional requirements, it lacks the polishing of features and
currently acts more as a prototype of a potential system. Based on the aim described in
the introduction it is a more modular and flexible system than the alternative weather
station products with the same core functionality though the affordability aim was not met
due to higher than expected costs. The future recommendations have been analysed
based upon each of the project's stages.

The requirements stage did provide many detailed requirements, but they were not elicited
directly from users. Instead, they should have been more effective using more direct
requirements elicitation from potential end-users of the system. This could have included
interviews with users of existing weather station products to understand their needs from a
system, and from non-users to understand why they have not yet used a weather station
product. This would have likely resulted in more useful requirements that directly represent
a user's requirements than those indirectly elicited from background research on the
market.

The design stage provided good results across all aspects of the system, but it should
have had more user evaluation mainly focused on the usability of the website UI designs
and the use of connectable services so that the smart home use case could be better
fulfilled by the system. Instead, the website design was purely based on the features
offered by existing systems and the concept of dashboard UI layouts and styles. While the
questionnaire responses showed that users did find the website UI easy to understand,
they had limited interactions with the actual website though letting each potential
experience the system for long periods would not have been practical regardless of the
better usability improvements it would have provided. By understanding what users
wanted from connectable services, the API would have been better designed to integrate
with the most common home automation services used by users. The design stage also
suffered from a large error due to the initial selection of a MongoDB database which was
not supported by the Raspberry Pi hardware until the implementation stage, this should
have been researched before it was selected for the database design and wouldn't have
resulted in any later difficulties.

The testing stage identified the success of the system’s implementation but did identify
that the radio range was lower than expected, this is important to ensure the project's
purpose and could be improved through better hardware or radio configuration.
Additionally, unit tests should have been written during the implementation through TDD
rather than being completed after the system’s implementation. This would have improved
the code structure and saved time caused by fixing code responsible for failing tests.

The evaluation stage demonstrated that the functionality was implemented correctly, but
that the affordability and node range requirements were not satisfied. While these were
both important for the purpose of improving upon existing weather station devices, they
can be implemented in future work with lower-cost hardware and better radio hardware. It
also identified that the accuracy of the measurements was not tested, thus the current
system may not be providing accurate measurements, this will need to be completed in
future work.

68

Additionally, there are some flaws identified from extended personal use of the system.
These include no radio protocol support for multiple linked climate data packets when a
single packet cannot support the amount of measured data collected. This means that the
current system can only support a certain amount of sensor modules at the same time.
Updating the sensor node and base station with new code requires manual updating, this
is unsuitable for general consumer use. Instead, it should be done automatically from a
remote code repository.

Based upon the issues with each step of the project the recommendations for system
improvements and research have been included in the future work section 9.3, with
personal recommendations in section 9.2.

9.2 Reflection

To improve future projects several personal recommendations have been made based on
the successes and failures of the project.

9.2.1 More Flexible Project Plan
Use a more flexible development life cycle that limits the number of overlapping tasks so
that delayed tasks have less of an impact on later tasks.

9.2.2 Feature Prioritisation
Prioritization based on primary and secondary features, as the whole system with primary
features could have been created first then with the secondary features added afterwards.
This would minimize the impacts of missing deadlines on the system’s core functionality
ensuring its main aims are satisfied.

9.2.3 Technology Compatibility
Ensure that full research is completed on the compatibility of different technologies when
required. This is due to the issues in the implementation where there was no MongoDB
support for Raspbian as planned for in the initial design. This resulted in delays due to
searching for another noSQL database as an alternative. When none were found, it
required changing the design to an SQL database and then continuing with the
implementation, resulting in lost development time.

9.2.4 Methodology Selection
More time should be used in selecting appropriate methodologies for each stage of the
project. This would likely result in the more efficient completion of each stage. As the steps
required by the methodology would likely improve results if followed correctly.

9.3 Future Work

There is plenty of future work to be completed with this system due to its flexibility and
potential expandability.

9.3.1 Additional Sensor Modules
Implement additional sensor modules such as lighting, rainfall, and wind detectors; so that
the system can be evaluated with multiple sensor modules per node.

69

9.3.2 Sensor Node Communication Range
The sensor nodes should have their radio range improved through antenna hardware or
using radio modules with greater range such as LoRa, this could help in scenarios
covering large geographic areas such as farms. This is especially important as while one
of the papers researched did use LoRa in a weather station system it did not include
testing of the maximum range. Improved communication range could also be explored
through node mesh networks and the repeating of packets towards the base station.

9.3.3 Sensor Module Interface Standardisation
There is future research into the standardisation of sensor interfaces which would remove
the need for custom sensor interface code within the sensor nodes.

9.3.4 Base Station Code Updating
The base station needs better code updating functionality that doesn’t require manual
updating files, instead, it should use the source files on the current master branch of the
GitHub repository so that the base station programs always remain up to date
automatically, this is especially important if multiple implementations of the system are
used.

9.3.5 Improved Radio Protocol
The radio protocol needs improvements to support multiple linked climate data packets.
The improvement would facilitate nodes sending multiple packets per climate recording
and combine them in the base station when the climate data is larger than a single packet.

9.3.6 Website Secondary Features
The website should be expanded with additional secondary features such as the searching
and organisation of sensors, more mobile-specific changes to improve usability and
performance. The climate data analysis could be improved with greater trends being
generated such as means, averages, and comparisons of historical data such as
comparing different weeks and months of climate data.

9.3.7 Sensor Accuracy Testing
Additionally, tests should be completed on the measurement accuracy of the system's
sensors when compared to local trusted sources of climate data, so that any measurement
biases can be understood.

9.3.8 Alternative Low-cost Hardware
Research and experimentation should be completed on what lower-cost hardware could
be used to make the system more affordable while remaining suitable for the rest of the
requirements.

70

10. References
AcuRite. (2016). AcuRite 01008M Atlas Weather Station. Retrieved from
https://www.acurite.com/shop-all/weather-instruments/weather-stations/atlas-weather-
station-with-access-remote-monitoring.html
Adafruit. (2020). Adafruit BME280 Library [Computer software]. Retrieved from
https://github.com/adafruit/Adafruit_BME280_Library
Adafruit. (2020). Adafruit Unified Sensor Driver [Computer software]. Retrieved from
https://github.com/adafruit/Adafruit_Sensor
Adityawarman, Y., & Matondang, J. (2018). Development of Micro Weather Station Based
on Long Range Radio Using Automatic Packet Reporting System Protocol. 2018
International Conference on Information Technology Systems and Innovation, ICITSI 2018
- Proceedings, 221–224. https://doi.org/10.1109/ICITSI.2018.8696081
Alex Grönholm. A. G. (2019). Advanced Python Scheduler [Computer software]. (Version
3.6.3). Retrieved from https://apscheduler.readthedocs.io/en/stable/
Ambient Weather. (2016). Ambient Weather WS-2902B Smart Weather Station. Retrieved
from https://www.ambientweather.com/amws2902.html
Arduino Software. (2020). Arduino IDE [Computer software]. (Version 1.8.10). Retrieved
from https://www.arduino.cc/en/main/software
Armin Ronacher. A. N. (2019). Flask [Computer software]. (Version 1.1.1). Retrieved from
https://flask.palletsprojects.com/en/1.1.x/
Bell, S., Cornford, D. and Bastin, L. (2013), The state of automated amateur weather
observations. Weather, 68: 36-41. https://doi.org/10.1002/wea.1980
BloomSky. (2016). SKY2 Weather Camera Station. Retrieved from
http://shop.bloomsky.com/products-list/sky2
Bresser. (2019). BRESSER WIFI professional weather station. Retrieved from
https://www.bresseruk.com/weather-station/bresser-wifi-professional-weather-station.html
Brush, A. J. B., Lee, B., Mahajan, R., Agarwal, S., Saroiu, S., & Dixon, C. (2011). Home
Automation in the Wild: Challenges and Opportunities.
https://doi.org/10.1145/1978942.1979249
Business Insider. (2020). Smart Farming in 2020: How IoT sensors are creating a more
efficient precision agriculture industry. Retrieved from
https://www.businessinsider.com/smart-farming-iot-agriculture?r=US&IR=T
Citizen Weather Observer Program. (n.d.). Citizen Weather Observer Program. Retrieved
from http://www.wxqa.com/
Cory Dolphin. C. D. (2019). Flask-CORS [Computer software]. (Version 3.0.8). Retrieved
https://github.com/corydolphin/flask-cors
Cypress. (2020). Cypress [Computer software]. (Version 4.0.2) Retrieved from
https://github.com/cypress-io/cypress
Davis Instruments. (2009). Vantage Vue Wireless Weather Station. Retrieved from
https://www.davisinstruments.com/product/vantage-vue-wireless-weather-station/
De Silva, L. C., Morikawa, C., & Petra, I. M. (2012). State of the art of smart homes.
Engineering Applications of Artificial Intelligence, 25(7), 1313–1321.
https://doi.org/10.1016/j.engappai.2012.05.002
Dri-Box. (2011). Dri-Box FL-1859-200 IP55 Weatherproof Box. Retrieved from http://dri-
box.com/
Eli Collins. E. C. (2019). Passlib [Computer software]. (Version 1.7.2). Retrieved from
https://passlib.readthedocs.io/en/stable/
Evan You. E. Y. (2019). Vue [Computer software]. (Version 2.6.10). Retrieved from
https://github.com/vuejs/vue
Facebook. (2020). Jest [Computer software]. (Version 25.1.0) Retrieved from
https://github.com/facebook/jest

https://apscheduler.readthedocs.io/en/stable/
https://doi.org/10.1016/j.engappai.2012.05.002

71

Gomez, C., & Paradells, J. (2010). Wireless home automation networks: A survey of
architectures and technologies. IEEE Communications Magazine, 48(6), 92–101.
https://doi.org/10.1109/MCOM.2010.5473869
Gomez, C., & Paradells, J. (2010). Wireless home automation networks: A survey of
architectures and technologies. IEEE Communications Magazine, 48(6), 92–101.
https://doi.org/10.1109/MCOM.2010.5473869
Greenough, J. (2016). SMART HOME MARKET: Adoption forecasts, top products, cost &
fragmentation problems. Retrieved from https://www.businessinsider.com/the-us-smart-
home-market-report-adoption-forecasts-top-products-and-the-cost-and-fragmentation-
problems-that-could-hinder-growth-2015-9
Holger Krekel. H. K. (2020). pytest [Computer software]. (Version 5.3.5) Retrieved from
https://github.com/pytest-dev/pytest
Internet Engineering Task Force. (2014a). Terminology for Constrained-Node Networks.
Retrieved from https://tools.ietf.org/html/rfc7228
Internet Engineering Task Force. (2019). Internet of Things (IoT) Security: State of the Art
and Challenges. Retrieved from https://tools.ietf.org/html/rfc8576
Jakub Juszczak. J. J. (2019). vue-chartjs [Computer software]. (Version 3.5.0). Retrieved
from https://github.com/apertureless/vue-chartjs
JetBrains. (2019). PyCharm Community Edition [Computer software]. (Version 2019.3).
Retrieved from https://www.jetbrains.com/pycharm/
Kanagaraj, E., Kamarudin, L. M., Zakaria, A., Gunasagaran, R., & Shakaff, A. Y. M.
(2015). Cloud-based remote environmental monitoring system with distributed WSN
weather stations. 2015 IEEE SENSORS - Proceedings, 1–4.
https://doi.org/10.1109/ICSENS.2015.7370449
Kapoor, P., & Barbhuiya, F. A. (2019). Cloud Based Weather Station using IoT Devices.
IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2019-October,
2357–2362. https://doi.org/10.1109/TENCON.2019.8929528
Kusriyanto, M., & Putra, A. A. (2019). Weather Station Design Using IoT Platform Based
On Arduino Mega. ISESD 2018 - International Symposium on Electronics and Smart
Devices: Smart Devices for Big Data Analytic and Machine Learning, 1–4.
https://doi.org/10.1109/ISESD.2018.8605456
Landon Gilbert-Bland. L. G. (2019). Flask-JWT-Extended [Computer software]. (Version
3.24.1). Retrieved from https://github.com/vimalloc/flask-jwt-extended
Lennart Regebro. L. R. (2019). tzlocal [Computer software]. (Version 2.0.0) Retrieved from
https://github.com/regebro/tzlocal
LowPowerLab. (2013). RFM69 library and Moteino R3. Retrieved from
https://lowpowerlab.com/2013/06/20/rfm69-library/
LowPowerLab. (2013). LowPowerLab RFM69 packet structure. Retrieved from
https://lowpowerlab.com/wp-
content/uploads/2013/06/RFM69_library_packet_structure.png
LowPowerLab. (2020). Low-Power [Computer software]. (Version 1.7). Retrieved from
https://github.com/lowpowerlab/lowpower
LowPowerLab. (2020). RFM69 Library [Computer software]. Retrieved from
https://github.com/LowPowerLab/RFM69
Michael Bayer. M. B. (2019). flask-sqlalchemy [Computer software]. (Version 2.4.1).
Retrieved from https://www.sqlalchemy.org/
MongoDB Inc. (2020). MongoDB [Computer software]. (Version 4.2). Retrieved from
https://www.mongodb.com/
Netatmo. (2012). Smart Home Weather Station. Retrieved from
https://www.netatmo.com/en-gb/weather/weatherstation
Nathan Reyes. N. R. (2020). v-calendar [Computer software]. (Version 1.0.1). Retrieved
from https://github.com/nathanreyes/v-calendar

72

npm, Inc. (2020). npm [Computer software]. (Version 6.13.4). Retrieved from
https://www.npmjs.com/
Paul Ganssle. P. G. (2019). dateutil [Computer software]. (Version 2.8.1). Retrieved from
https://github.com/dateutil/dateutil/
Postman Inc. (2020). Postman [Computer software]. (Version 7.22.1). Retrieved from
https://www.postman.com/
Python Packaging Authority. (2020). pip [Computer software]. (Version 20.0.2). Retrieved
from https://pip.pypa.io/en/stable/
Quoc-Anh Nguyen. Q. N. (2019). Vue-axios [Computer software]. (Version 2.1.5).
Retrieved from https://github.com/imcvampire/vue-axios
Rahman, M., Hossen, M., & Rahama, T. (2017). Raspberry Pi as Sensor Node and
Hardware of the Internet of Things (Iot) for Smart Home. International Journal of Innovative
Research in Electronics and Communications, 4(1), 12–19. https://doi.org/10.20431/2349-
4050.0401003
Saini, H., Thakur, A., Ahuja, S., Sabharwal, N., & Kumar, N. (2016). Arduino based
automatic wireless weather station with remote graphical application and alerts. 3rd
International Conference on Signal Processing and Integrated Networks, SPIN 2016, 605–
609. https://doi.org/10.1109/SPIN.2016.7566768
Sasha Koss. S. K. (2019). Date-fns [Computer software]. (Version 2.9.0). Retrieved from
https://github.com/date-fns/date-fns
Savic, T., & Radonjic, M. (2016). One approach to weather station design based on
Raspberry Pi platform. 2015 23rd Telecommunications Forum, TELFOR 2015, 623–626.
https://doi.org/10.1109/TELFOR.2015.7377544
Shakeeb Sadikeen. S. S. (2019). vue-toasted [Computer software]. (Version 1.1.27).
Retrieved from https://github.com/shakee93/vue-toasted
Statista. (2019). Smart Home. Retrieved from
https://www.statista.com/outlook/279/100/smart-home/worldwide#market-age
Steven Loria. S. L. (2019). marshmallow [Computer software]. (Version 3.3.0). Retrieved
from https://github.com/marshmallow-code/marshmallow
Tenzin, S., Siyang, S., Pobkrut, T., & Kerdcharoen, T. (2017). Low cost weather station for
climate-smart agriculture. 2017 9th International Conference on Knowledge and Smart
Technology: Crunching Information of Everything, KST 2017, 172–177.
https://doi.org/10.1109/KST.2017.7886085
Therpin. (2017). Therpin DIY Waterproof Electronic ABS Plastic Project Junction Box
Enclosure 200mm x 120mm x 75mm. Retrieved from https://www.amazon.co.uk/Therpin-
Waterproof-Electronic-Junction-Enclosure/dp/B071GRDPZG
Thibault Friedrich. T. F. (2019). node-wifi [Computer software]. (Version 2.0.12). Retrieved
from https://github.com/friedrith/node-wifi
Tidelift. (2019). Autoprefixer [Computer software]. (Version 9.7.4). Retrieved from
https://github.com/postcss/autoprefixer
vuejs. (2019). Vue CLI [Computer software]. (Version 4.1.2) Retrieved from
https://github.com/vuejs/vue-cli
vuejs. (2019). Vue-test-utils [Computer software]. (Version 1.0.0-beta.29). Retrieved from
https://github.com/vuejs/vue-test-utils
vuejs. (2019). Vuex [Computer software]. (Version 3.1.2). Retrieved from
https://github.com/vuejs/vuex
vuejs. (2020). vue-router [Computer software]. (Version 3.1.5). Retrieved from
https://github.com/vuejs/vue-router
Vujović, V., & Maksimović, M. (2015). Raspberry Pi as a Sensor Web node for home
automation. Computers and Electrical Engineering, 44, 153–171.
https://doi.org/10.1016/j.compeleceng.2015.01.019

73

WeatherFlow. (2016). WeatherFlow Smart Home Weather Station. Retrieved from
https://weatherflow.com/tempest-weather-system/
webpack. (2019). webpack [Computer software]. Retrieved from
https://github.com/webpack/webpack
Williams, M., Cornford, D., Bastin, L., Jones, R., & Parker, S. (2011). Automatic
processing, quality assurance and serving of real-time weather data. Computers and
Geosciences, 37(3), 353–362. https://doi.org/10.1016/j.cageo.2010.05.010
World Meteorological Organization. (2018). Guide to Meteorological Instruments and
Methods of Observation (Issue 8). Retrieved from
https://www.weather.gov/media/epz/mesonet/CWOP-WMO8.pdf

74

11. Appendices

11.1 Appendix A: Project Initiation Document

School of Computing Final Year
Project

Daniel Hearn

PJE40

Project Initiation Document

Networked Climate Monitor

75

Project Initiation Document

1. Basic details

Student name: Daniel Hearn

Draft project title: Networked Climate Monitor

Course: BSC (Hons) Computer Science

Client organisation: N/A

Client contact name: N/A

Project supervisor: Rinat Khusainov

2. Degree suitability
The project is suitable for a Computer Science final year project as it involves producing
an IT system through software design and development, web development, networking
design, database design and development, and Internet-of-Things device development.

3. Outline of the project environment and problem to be solved
The problem that this project aims to solve is that it is difficult to get accurate and real-time
information about indoor and outdoor climates in areas that you live in or own such as your
house or office. This climate information includes temperature, humidity, air quality,
rainfall, and wind speed. While some commercial products exist that attempt to solve the
problem, they are expensive and often limited by the number of separate climate sensors
they can track and the types of information that these sensors can track. Due to this
problem and the limited existing solutions, a cheaper and more modular solution is
required to solve the problem.

4. Project aim and objectives
The project aims to solve the problem by developing a system that can record the local
climate around a sensor. The recorded climate data is then accessible via a website that
enables users to see real-time and historical data from the climate sensor. This aim will be
achieved by researching, designing, implementing and testing a system to solve the
problem. This system will contain at least one Internet-of-Things device with a temperature
sensor, a database to store the sensor data, and a web-based user interface to remotely
view temperatures collected by the sensor over the internet. This system will be designed
to be modular so that additional types of data or the climate of a different area could be
collected by additional sensors.

Objectives in meeting the project’s aim:

1. Obtain, analyse and specify the requirements of the system.
2. Research available climate monitoring solutions to understand existing commercial

and research projects that design or implement a system that solves a similar
problem to the one proposed.

3. Research available Internet-of-Things technology and compare them to find the
most suitable technology to be used in the project while considering the technology
used in similar systems.

76

4. Design a system that will meet the aim of the project by solving the problem.
5. Implement the system based on the design.
6. Test the system to ensure it fulfils the project’s aim and correctly solves the

problem.
7. Evaluate the test results to establish the project’s suitability as a viable solution to

the problem.

The initial requirements below have been extracted from analysis of the problem and the
initial research on the features of existing commercial systems within the problem’s
environment. These requirements will be expanded further during the full requirements
analysis and specification, along with the relative importance of the individual
requirements.

Functional Requirements:

● The system should have a device with a temperature sensor that can measure the
temperature in the surrounding environment.

● The system should have a device with a humidity sensor that can measure the
relative humidity in the surrounding environment.

● The sensors devices should function in indoor and outdoor environments.
● The device with the sensors should have communication capabilities to send the

sensor data to the database via the internet.
● The system should have a database to store the sensor data.
● The system should have an API to handle setting and retrieving the sensor data to

and from the database over the internet.
● The system should have a web-based interface accessed over the internet allowing

for the viewing of the data collected by the temperature and humidity sensors.
● The system should have the capability to implement additional sensors to the

project that collect additional data.
● The sensor devices should be battery-powered, with the capability to also be

powered through a mains connection.

Non-Functional Requirements:

● Temperature sensor data should be recorded within ±0.5°C accuracy.
● The temperature sensor should be able to record within a range of -40°C to 80°C.
● Humidity sensor data should be recorded within ±0.5°C accuracy.
● The humidity sensor should be able to record within a range of -40°C to 80°C.
● The system should be able to handle between 1 to 5 climate sensor devices within

or around a single location or house that are all recording data for the same user.
● The system should be able to handle multiple climate sensor devices each in

different geographic locations that are all recording data for the same user.
● The system should be able to store a user’s climate data for at least 6 months from

the recording of that data.
● The frequency that the sensors record at should be as often every 5 minutes.
● The sensor devices should have a battery life of at least 2 months before having to

have their batteries replaced or recharged.
● Climate sensor data on the web-based interface should be the most recent data

within one minute of the data being recorded on the sensor device.
● The system should be more affordable than existing solutions with the final system

costing under £100 to implement.
● Once the system has been built it should be easy to implement in a different

location without technical changes or technical knowledge of the system.

77

● The system should be easy to maintain once the system has been built and
implemented, without technical changes to the system other than
replacing/recharging the batteries used in the sensor device.

● The user data shall be kept secure from malicious or accidental access by
individuals other than the user that the data belongs to.

5. Project deliverables
Information system artefacts to be developed:

● Internet-of-Things device with climate sensing capabilities.
● Software for the climate sensor device.
● Server software with an API for handling climate data and web application serving

capabilities.
● Database for sensor data storage.
● Web application for viewing the climate sensor data.

Documents to be produced:

● Research results.
● Requirement specifications.
● Design specifications.
● Test strategies and results.
● Final report.

6. Project constraints
Possible constraints on the project:

● Acquiring the hardware required to build the sensor device as they will have
financial constraints and will be subject to availability from retailers.

● Testing the solution within a realistic environment that accurately reflects the
problem so that the solution can be accurately evaluated.

7. Project approach
The project approach will use the waterfall methodology so that the project’s steps are
sequentially approached, this provides significant time to be allocated at each step. This
approach will allow for detailed planning at the start of each step so that risks and issues
can be identified before work is undertaken on each step. But this approach is inflexible
and could result in later milestones being delayed if a task is not completed on time due to
unexpected issues. These issues should be mitigated by the plans to review and mitigate
risks, as well as the backup plans if the risks are not successfully mitigated.

Major steps of the approach:

1. Requirements elicitation and analysis.
2. Research into existing systems.
3. System design.
4. System implementation.
5. System testing.
6. System evaluation.
7. Writing of the final report.

Starting background research:

● Existing commercial and research systems for climate monitoring.
○ How they handle communication to the Internet.
○ How they handle communication between climate sensing devices.

78

○ How they handle powering the climate sensor devices.
○ What data they can collect and if they require additional sensors for

additional types of data collection.
○ The cost of implementing these systems.
○ Whether these systems work indoors and/or outdoors.

Required skills to produce the system:

● Web-app development.
● Web-server development.
● API development.
● Database design and development.
● Internet-of-Things device development.
● Network design.

To acquire the required skills that I don’t know, I will need to learn more about
implementing Internet-of-Things device communication and how to install and configure
specific hardware with Internet-of-Things devices.

8. Facilities and resources
The project will require a computer/laptop to develop the system’s software and database.
This computer, another computer or a cloud-based service will also be required to host the
database and server software.

The project will need resources in the form of the technology required to build an ideal
temperature sensor device based on the results of Internet-of-Things technology research.
This technology includes the main device (e.g Raspberry Pi, Arduino, microcontrollers)
and the electronics hardware (e.g temperature sensors, wiring). Acquiring this technology
will be subject to financial and availability constraints as they will need to be bought from
retailers.

9. Log of risks
Possible project risks:

● Running out of time to produce the project due to the complexity of producing a
system comprising of multiple parts, where each part is required to deliver an
effective system that will solve the problem.

● Difficulties in obtaining the technology that is required in the building of the
temperature sensing device.

● Difficulties in designing and implementing the temperature sensing device with
compatible software and hardware.

Backup plans:

● Reducing the complexity and number of features within the project to provide a
partial solution to the problem.

● Changing technologies if the technologies established in the design become
unsuitable during the project’s implementation due to unforeseen complications.

79

Plan for reviewing risks:

Risk
description
and type

Risk impact Risk
probabilit
y

Mitigation First indicator

Running out of
time to
implement and
connect all
parts of the
system.

High, could
result in an
incomplete
system with
limited usability.

Medium Detailed project
planning so that time
is allocated for each
part of the system or
reducing the number
of features in the
system.

Consistently not
meeting
deadlines within
the design and
implementation
of the system.

Problems
obtaining the
technology for
the sensor
device.

High, unable to
build the sensor
device or could
result in
significant
delays.

Low Detailed research
into what technology
will be required and
where they can be
purchased or
changing the
technology being
used.

Not meeting
deadlines when
designing and
implementing
the sensor
device.

Problems
building the
sensor device.

High, the
sensor device is
required for the
rest of the
system to be
usable and
problem to be
solved.

Medium Detailed research
early in the project
into what technology
is required and how
to implement them
into the device.

Not meeting
deadlines for
building the
sensor device.

10. Starting points for research
There are various starting points for research on Internet-of-Things home automation
systems, including systems that use sensors to detect the local climate and control other
devices based on the climate data.

Commercial Solutions:

● Netatmo
● WeatherFlow
● BloomSky SKY2 Weather Station
● BRESSER WIFI Professional Weather Station
● AcuRite Atlas
● BloomSky
● Davis Vantage Vue

Academic Research:

● Bluetooth based home automation system
● Bluetooth Remote Home Automation System Using Android Application
● Cloud based low-cost Home Monitoring and Automation System
● Raspberry Pi as Sensor Node and Hardware of the Internet of Things (Iot) for Smart

https://www.netatmo.com/en-gb/weather
https://shop.weatherflow.com/products/smart-home-weather-stations
http://shop.bloomsky.com/products-list/sky2
https://www.bresseruk.com/weather-station/bresser-wifi-professional-weather-station.html
https://www.acurite.com/
http://shop.bloomsky.com/products-list/sky2
https://www.davisinstruments.com/product/vantage-vue-wireless-weather-station/
https://www.researchgate.net/publication/222406895_Bluetooth_based_home_automation_system
https://pdfs.semanticscholar.org/d130/07c3a5163cf51fef32e473c2f04f497a3456.pdf
http://people.cst.cmich.edu/yelam1k/asee/proceedings/2015/paper%20files/student_papers/2015_asee_ncs_conference_submission_90.pdf
https://www.arcjournals.org/pdfs/ijirec/v4-i1/3.pdf

80

Home
● An Internet based wireless home automation system for multifunctional devices
● The state of automated amateur weather observations
● How good are citizen weather stations? Addressing a biased opinion

11. Breakdown of tasks
Walkthrough of approach:
To create the system, the approach described in point 7 will be followed which results in
the tasks being completed sequentially. Due to this the requirements elicitation is
completed first, following with the research, design, implementation, testing, evaluation,
and report writing steps. Overlap on some sub-tasks is required as some parts of the
system will rely on each other to be implemented.

Project tasks and sub-tasks:

1. Requirements specification.
2. Research into existing commercial and research projects
3. Research into available IoT technology for the sensor device
4. System design

4.1. Design sensor device hardware and software
4.2. Design web-server
4.3. Design API
4.4. Design database
4.5. Design user interface

5. System implementation
5.1. Implement sensor device hardware and software
5.2. Implement web-server
5.3. Implement API
5.4. Implement database
5.5. Implement user interface

6. System testing
6.1. Test sensor device
6.2. Test database
6.3. Test web server
6.4. Test API
6.5. Test user interface
6.6. Test end-to-end of the entire system

7. Project evaluation
8. Writing of the final report

8.1. Introduction
8.2. Literature Review
8.3. Methodologies and Project management
8.4. Requirements and Analysis
8.5. Design
8.6. Implementation
8.7. Testing
8.8. Evaluation
8.9. Conclusion

https://www.arcjournals.org/pdfs/ijirec/v4-i1/3.pdf
https://ieeexplore.ieee.org/abstract/document/1561840
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/wea.1980
https://rmets.onlinelibrary.wiley.com/doi/10.1002/wea.2316

81

12. Project plan

Final Report Plan:

82

Risks to the success of the project:
The amount of time required to research, design, and implement each part of the system is
a risk, as the complexity of the system requires all parts to be operational for the system to
correctly solve the proposed problem.

There is a risk that obtaining the technology required to build a suitable sensor device
could have unforeseen delays as technology will be subject to financial constraints and
availability at retailers.

Steps to minimise the risks:

● Following a detailed plan with milestones for each task, so that project progress can
be easily understood and that potential delays and missed milestones can act as a
warning that overall progress is not on track.

● Regular supervisor-student meetings to ensure that regular meaningful work is
produced and that progress is maintained across the duration of the project.

13. Legal, ethical, professional, social issues

There are no legal/ethical/professional/social issues that may impose constraints on the
project.

Potential security implications:
There is potential for the system to store a user’s email and password in a database, but
this will depend on how the system is designed, how users are described within the
system, and whether user’s are given access to the system for testing.

Ethics approval:
Ethics approval will not be required for the project as it will not be tested by participants or
be publicly released or accessible, so potential security concerns for user data can be
disregarded.

83

11.2 Appendix B: Ethics certificate

84

11.3 Appendix C: Source code link

https://github.com/DanielHearn/networked_climate_monitor

https://github.com/DanielHearn/networked_climate_monitor

85

11.4 Appendix D: Requirements background research

Name WeatherFlow

Source Link https://shop.weatherflow.com/products/smart-home-weather-
stations

System cost $300 USD (£234 converted as of 25/10/2019)

Modularity Partly modular as it includes two outdoor sensors that capture
different data. But there is no option to buy sensors individually
only to buy the two sensors and a base station as a set.

Inside/Outside
sensors

Two outdoor sensors with an indoor base station.

Types of data
recorded

Air sensor detects: ambient light, UV index, solar radiation, wind
speed, wind direction, and rain intensity.

Sky sensor detects: temperature, humidity, atmospheric
pressure, lightning.

Features of the
website and/or
application

Proprietary website and mobile application, with both displaying
the same data.
Features:

● Latest recording for all types of sensor data
● Historical data recording for each day with high, low and

average values for each data type
● Historical data displayed in a chart for each data type

from the last hour, last day, last week, and last month.
● Sensor battery status
● Weekly forecast for the sensor location
● Community sensor map

Method of sensor
communication

“AIR and SKY connect via long range telemetry to an indoor
receiving hub.”

Method of sensor
powering

Air sensor powered by 8 AA batteries, with the Sky sensor
powered by 4 AA batteries or solar power.

Sensor battery life Up to one year for AIR and SKY sensors.

Method of base
station powering

Mains connection.

Connectable services Weather Underground, Google Assistant, IFTTT, Amazon Alexa

Temperature accuracy ±0.4°C

Temperature range -38°C to 60°C

Humidity accuracy ±4%.

https://shop.weatherflow.com/products/smart-home-weather-stations
https://shop.weatherflow.com/products/smart-home-weather-stations

86

Humidity range 0 to 100%

Maximum sensor
distance from the
base station

Up to 100 metres.

Sensor recording
frequency

Not specified

Maximum number of
devices per user

Not specified

Storage duration Not specified

Table 1. WeatherFlow feature research

Name Ambient Weather WS-2902 Osprey Weather Station

Source Link https://www.ambientweather.com/amws2902.html

System cost $129.99 (£100 converted as of 25/10/2019)

Modularity No, one outdoor sensor and an indoor base station.

Inside/Outside
sensors

Outside sensor with an indoor base station.

Types of data
recorded

Outdoor Sensor detects: temperature, humidity, atmospheric
pressure, wind speed, wind direction, rainfall, solar radiation, UV
index, dew point.

Indoor base station detects: temperature, humidity, atmospheric
pressure.

Features of the
website and/or
application

Proprietary website and mobile application, with both displaying
the same data.
Features:

● Latest recording for all types of sensor data.
● Trends between latest sensor data and the previous

day’s sensor data.
● Historical data recording for each day with high, low and

average values for each data type
● Historical data displayed in a chart for each data type

from any specified date range.
● Community sensor map.

Method of sensor
communication

915 MHz wireless radio transmission.

Method of sensor
powering

Powered by 2 AA batteries or solar power

Sensor battery life Not specified.

https://www.ambientweather.com/amws2902.html

87

Method of base
station powering

Mains

Connectable services Weather Underground, Weathercloud, Google assistant, IFTTT,
Amazon Alexa

Temperature accuracy Indoor Temperature Accuracy: ± 0.5°C
Outdoor Temperature Accuracy: ± 0.5°C

Temperature range Indoor Temperature Range: -10 to 60°C
Outdoor Temperature Sensor Range: -40 to 65°C

Humidity accuracy Indoor Humidity Accuracy: ± 5%
Outdoor Humidity Accuracy: ± 5%

Humidity range Indoor Humidity Range: 10 to 99%
Outdoor Humidity Range: 10 to 99%

Maximum sensor
distance from the
base station

25 metres.

Sensor recording
frequency

Every minute.

Maximum number of
devices per user

Up to 10 sensors per account.

Storage duration Not specified

Table 2. Ambient Weather feature research

Name AcuRite Atlas

Source Link https://www.amazon.com/AcuRite-01009M-Weather-Definition-
Touchscreen/dp/B074XK4BSN

System cost $186 (£145 converted as of 25/10/2019)

Modularity Main sensor isn’t but a few additional sensor attachments are
available including a lightning detection module, wind vane
extension, sensor battery pack, and sensor mains power
adapter.
Up to 7 sensors per base station.

Inside/Outside
sensors

Outside sensor with an indoor base station.

Types of data
recorded

Outside sensor detects: temperatures, humidity, atmospheric
pressure, UV index, wind speed, wind direction, rainfall, light
intensity.

Features of the
website and/or

Proprietary website and mobile application, both displaying the
same data.

https://www.amazon.com/AcuRite-01009M-Weather-Definition-Touchscreen/dp/B074XK4BSN?ref_=ast_sto_dp&th=1
https://www.amazon.com/AcuRite-01009M-Weather-Definition-Touchscreen/dp/B074XK4BSN?ref_=ast_sto_dp&th=1

88

application Features:
● Latest recording for all types of sensor data

● Historical data displayed in a chart for each data type

from the last hour, last day, last week, and last month.
● Weekly forecast for the sensor location.
● Custom alerts triggered by thresholds for types of sensor

data.

Method of sensor
communication

433 MHz wireless radio transmission.

Method of sensor
powering

Powered by solar power or 4 AA batteries.

Sensor battery life Not specified.

Method of base
station powering

Micro USB with a battery backup used to temporarily store data
until the USB power is restored.

Connectable services Weather Underground, Weathercloud, Amazon Alexa

Temperature accuracy ± 1°C

Temperature range -40°C to 70°C

Humidity accuracy ± 2%

Humidity range 1% to 99%

Maximum sensor
distance from the
base station

Up to 100 metres.

Sensor recording
frequency

Records every 30 seconds but is only stored online every 5
minutes.

Maximum number of
devices per user

Not specified.

Storage duration 1 month

Table 3. AcuRite Atlas feature research

Name Davis Vantage Vue

Source Link https://www.davisinstruments.com/product_documents/weather/
spec_sheets/6250_6351_57_SS.pdf
https://www.davisinstruments.com/product/vantage-vue-
wireless-weather-station/

System cost £349.99

Modularity No, one outdoor sensor and an indoor base station.

https://www.davisinstruments.com/product_documents/weather/spec_sheets/6250_6351_57_SS.pdf
https://www.davisinstruments.com/product_documents/weather/spec_sheets/6250_6351_57_SS.pdf
https://www.davisinstruments.com/product/vantage-vue-wireless-weather-station/
https://www.davisinstruments.com/product/vantage-vue-wireless-weather-station/

89

Inside/Outside
sensors

Outside sensor with an indoor base station.

Types of data
recorded

Outdoor sensor detects: temperature, humidity, wind speed,
wind direction, rainfall
Base station detects: temperature, humidity

Features of the
website and/or
application

Proprietary website and mobile application.
Features:

● Latest recording for all types of sensor data
● Historical data displayed in a chart for each data type.
● Weekly forecast for the sensor location.
● Community sensor map

Sending the recorded measurements to the website requires a
£250 adapter to provide the internet connection. It also requires
a paid monthly subscription to access the historical data and
chart features on the website.

Method of sensor
communication

868.0 - 868.6 MHz wireless radio transmission.

Method of sensor
powering

Powered by battery and solar panel

Sensor battery life Up to 8 months without recharging via solar power

Method of base
station powering

Three C batteries.

Connectable services None available.

Temperature accuracy ± 1°C

Temperature range -40° to 65°C

Humidity accuracy ± 2%

Humidity range 1% to 100%

Maximum sensor
distance from the
base station

Up to 300 metres.

Sensor recording
frequency

Every 10 seconds

Maximum number of
devices per user

Not specified.

Storage duration Not specified

Table 4. Davis Vantage Vue feature research

Name BloomSky

90

Source Link https://bloomsky.force.com/support/s/article/sky-2-specifications
http://shop.bloomsky.com/products-list/sky2

System cost £295

Modularity No it only has an outside sensor.

Inside/Outside
sensors

Outside sensor

Types of data
recorded

Outside sensor detects: temperature, humidity, atmospheric
pressure, rainfall.
The outside sensor also regularly takes images of the sky from
an onboard camera.

Features of the
website and/or
application

Proprietary website and mobile application.
Features:

● Latest recording for all types of sensor data
● Historical data displayed in a chart for each data type.
● Weekly forecast for the sensor location.
● Community sensor map.
● Daily timelapse of the sky images

Method of sensor
communication

WiFi 2.4GHz
Bluetooth used to pair with a phone during the installation.

Method of sensor
powering

Battery recharged by solar power or a main connection.

Sensor battery life Two weeks without being recharged by solar power or mains
connection.

Method of base
station powering

N/A as the outside sensor acts as a base station

Connectable services IFTTT

Temperature accuracy ±0.3°C

Temperature range 0°C to 65°C

Humidity accuracy ± 3%

Humidity range 10% to 90%

Maximum sensor
distance from the
base station

Not specified.

Sensor recording
frequency

5 minutes unless a 2c temperature difference is detected

Maximum number of
devices per user

Not specified.

https://bloomsky.force.com/support/s/article/sky-2-specifications
http://shop.bloomsky.com/products-list/sky2

91

Storage duration Not specified

Table 5. BloomSky feature research

Name BRESSER WiFi Professional Weather Station

Source Link https://www.bresseruk.com/weather-station/bresser-wifi-
professional-weather-station.html
https://www.bresser.de/out/media/b5c6a05f16c23d43124fa6288
9a2edb8.pdf

System cost £197

Modularity No, one outdoor sensor and an indoor base station.

Inside/Outside
sensors

Outdoor sensor and indoor base station.

Types of data
recorded

Outdoor sensor detects: temperature, wind speed, atmospheric
pressure, UV, humidity, rainfall.

Features of the
website and/or
application

Does not have its own system but instead uses weather
underground to view the data on its website or mobile
application.

Method of sensor
communication

868 MHz wireless radio transmission.

Method of sensor
powering

Powered by 3 AA batteries
Has backup solar power

Sensor battery life Not specified.

Method of base
station powering

Mains

Connectable services Weather underground (Required to view sensor data via the
internet)

Temperature accuracy Not specified.

Temperature range -40°C to 60°C

Humidity accuracy ± 1%

Humidity range 1% to 99%

Maximum sensor
distance from the
base station

Up to 150 metres.

Sensor recording
frequency

Not specified.

Maximum number of Not specified.

https://www.bresseruk.com/weather-station/bresser-wifi-professional-weather-station.html
https://www.bresseruk.com/weather-station/bresser-wifi-professional-weather-station.html
https://www.bresser.de/out/media/b5c6a05f16c23d43124fa62889a2edb8.pdf
https://www.bresser.de/out/media/b5c6a05f16c23d43124fa62889a2edb8.pdf

92

devices per user

Storage duration Not specified

Table 6. BRESSER feature research

Name Netatmo

Source Link https://www.netatmo.com/en-gb/weather/weatherstation

System cost £149.99

Modularity Partly comes with an outside sensor and an inside sensor.
Additional sensors can be added to the same system, these are
up to 3 additional indoor modules, 1 rain gauge, and 1 outdoor
sensor.

Inside/Outside
sensors

Outside and inside sensors.

Types of data
recorded

Outside sensor detects: temperature, humidity, wind speed,
wind direction, sound levels, Co2 levels,

Inside sensor detects: temperature, humidity, air quality.

Features of the
website and/or
application

Proprietary website and mobile application.
Features:

● Latest recording for all types of sensor data
● List of available sensors for that account.
● Sensor battery level, signal.
● Historical data displayed in a chart for each data type.

○ Can change day, week, month, year for graph
○ See previous day, week, month, year

● Weekly forecast for the sensor location.
● Community sensor map.

Method of sensor
communication

WiFi 2.4GHz

Method of sensor
powering

Outside sensor 4 AAA batteries
Outside sensor 4 AAA batteries

Sensor battery life Inside sensor claims 1-year life
Outside sensor claims 2-year life

Method of base
station powering

Inside sensor acts as a base station, so 4 AAA batteries.

Connectable services Not available.

Temperature accuracy ± 0.3°C

Temperature range Inside sensor: 0°C to 50°C
Outside sensor: -40°C to 65°C

https://www.netatmo.com/en-gb/weather/weatherstation

93

Humidity accuracy ± 3%

Humidity range 0 to 100%

Maximum sensor
distance from the
base station

Up to 100 metres.

Sensor recording
frequency

Every 5 minutes.

Maximum number of
devices per user

Unlimited per account.

Storage duration Not specified

Table 7. Netatmo feature research

94

11.5 Appendix E: API Endpoint Documentation

Name Authenticate user from email and password

Descriptio
n

Authenticates that the input email and password match the stored email and
password in the database and returns the authentication token.

Url /login

Method Post

Header
Parameter
s

None

Path
Parameter
s

None

Query
Parameter
s

None

Body
Parameter
s

Field Type Required Description

password String Yes Password.

email String Yes Email.

Success
Response

Code: 200
Body: {
 status: “Successful login”,
 access_token: <string>,
 refresh_token: <string>
}

Error
Response

Incorrect Credentials
Code: 401
Body: {
 status: “Error”,
 errors: [“Email or password is incorrect”]
}

Table 1. Login Endpoint Design

Name Logout access token

Descriptio
n

Blacklists the access token so that the access token can no longer be used
for authentication.

95

Url /logout/access

Method Post

Header
Parameter
s

Field Type Required Description

Authorizatio
n

String Yes Authentication token that has been
received from successful login or
registration.

Path
Parameter
s

None

Query
Parameter
s

None

Body
Parameter
s

None

Success
Response

Code: 200
Body: {
 status: “Access token has been revoked”,
}

Error
Response

Incorrect Credentials
Code: 401
Body: {
 status: “Error”,
 errors: [“Access token invalid”]
}

Missing Auth Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Missing Authorization Header”]
}

Table 2. Logout Access Token Endpoint Design

Name Logout refresh token

Descriptio
n

Blacklists the refresh token so that the refresh token can no longer be used
for obtaining a new access token.

Url /logout/refresh

Method Post

96

Header
Parameter
s

Field Type Required Description

Authorizatio
n

String Yes Refresh token that has been
received from successful login or
registration.

Path
Parameter
s

None

Query
Parameter
s

None

Body
Parameter
s

None

Success
Response

Code: 200
Body: {
 status: “Refresh token has been revoked”,
}

Error
Response

Incorrect Credentials
Code: 401
Body: {
 status: “Error”,
 errors: [“Refresh token invalid”]
}

Missing Auth Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Missing Authorization Header”]
}

Table 3. Logout Refresh Token Endpoint Design

Name Refresh access token

Descriptio
n

Provides a new access token once provided a valid refresh token.

Url /token/refresh

Method Post

Header
Parameter
s

Field Type Required Description

97

Refresh String Yes Refresh token that has been received
from successful login or registration.

Path
Parameter
s

None

Query
Parameter
s

None

Body
Parameter
s

None

Success
Response

Code: 200
Body: {
 status: “Successful refresh”,
 access_token: <string>,
}

Error
Response

Incorrect Credentials
Code: 401
Body: {
 status: “Error”,
 errors: [“Refresh token invalid”]
}

Table 4. Refresh Access Token Endpoint Design

Name Add new sensor

Descriptio
n

Adds a new sensor to the collection if the user is authorised.

Url /sensors

Method Post

Header
Parameter
s

None

Path
Parameter
s

None

Query
Parameter
s

Field Type Required Description

api_key String Yes Api key used only by the base station
radio program.

98

Body
Parameter
s

Field Type Require
d

Description

name String Yes Name of the sensor.

sensor_id Integer Yes ID of the sensor, this ID cannot
already exist within the collection.

Success
Response

Code: 200
Body: {
status: “Sensor successfully created.”
}

Error
Response

Missing name field
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "name": [
 "Missing data for required field."
]
 }
}
Missing sensor_id field
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "sensor_id": [
 "Missing data for required field."
]
 }
}

Missing user_id field
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "user_id": [
 "Missing data for required field."
]
 }
}

Name field isn’t a string
Code: 422
Body: {
 "status": "Error",

99

 "errors": {
 "name": [
 "Not a valid string."
]
 }
}

sensor_id field isn’t an integer
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "sensor_id": [
 "Not a valid integer."
]
 }
}

user_id field isn’t an integer
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "user_id": [
 "Not a valid integer."
]
 }
}

Duplicate ID
Code: 400
Body: {
 status: “Error”,
 errors: [“'A sensor with that id already exists”]
}

Invalid or Missing API key
Code: 401
Body: {
 status: “Error”,
 errors: [“Invalid api key”]
}

Table 5. Add Sensor Endpoint Design

Name Get all sensors

Descriptio
n

Gets all sensor data from the collection.

Url /sensors

100

Method Get

Header
Parameter
s

Field Type Required Description

Authorization String Yes Authentication token that has
been received from successful
login or registration.

Path
Parameter
s

None

Query
Parameter
s

None

Body
Parameter
s

None

Success
Response

Code: 200
Body: {
 status: “Sensors successfully retrieved”
 sensors: [
 {
 name: <string>
 identifier: <string>
 recent_climate_data: {
 time_date: <string in ISO 8601 format>
 battery_voltage: <float>
 sensor_data: [
 {
 type: <string>
 value: <float>
 unit: <string>
 }
]
 }
 }
]
}

Error
Response

Missing Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Missing authentication token”]
}

Invalid Authentication Token
Code: 401

101

Body: {
 status: “Error”,
 errors: [“Invalid authentication token”]
}

Table 6. Get Sensors Endpoint Design

Name Delete all sensors

Descriptio
n

Deletes all sensor data from the collection.

Url /sensors

Method Delete

Header
Parameter
s

Field Type Required Description

Authorization String Yes Authentication token that has
been received from successful
login or registration.

Path
Parameter
s

None

Query
Parameter
s

None

Body
Parameter
s

None

Success
Response

Code: 200
Body: {
 status: “Sensors successfully deleted”
}

Error
Response

Missing Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Missing authentication token”]
}

Invalid Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Invalid authentication token”]

102

}

Table 7. Delete Sensors Endpoint Design

Name Update sensor

Descriptio
n

Updates an existing sensor with changes to some or all of the keys.

Url /sensors/{sensor_id}

Method Patch

Header
Parameter
s

Field Type Required Description

Authorization String Yes Authentication token that has been
received from successful login or
registration.

Path
Parameter
s

Field Description

sensor_id ID of the sensor that will have its data updated.

Query
Parameter
s

None

Body
Parameter
s

Field Type Require
d

Description

name String No Name of the sensor.

sensor_id Integer No ID of the sensor, this ID cannot
already exist within the collection.

Success
Response

Code: 200
Body: {
 status: “Sensor successfully updated”
}

Error
Response

Name field isn’t a string
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "name": [
 "Not a valid string."

103

]
 }
}

sensor_id field isn’t an integer
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "sensor_id": [
 "Not a valid integer."
]
 }
}

Sensor doesn’t exist
Code: 400
Body: {
 status: “Error”,
 errors: [“Sensor doesn’t exist”]
}

Missing Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Missing authentication token”]
}

Invalid Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Invalid authentication token”]
}

Table 8. Update Sensor Endpoint Design

Name Get sensor

Descriptio
n

Gets sensor data for a specified sensor ID

Url /sensors/{sensor_id}

Method Get

Header
Parameter
s

Field Type Required Description

Authorization String Yes Authentication token that has been

104

received from successful login or
registration.

Path
Parameter
s

Field Type Required Description

sensor_id Integer Yes ID of the sensor that will have its data
retrieved

Query
Parameter
s

None

Body
Parameter
s

None

Success
Response

Code: 200
Body: {
 status: “Sensor successfully retrieved”
 sensor: {
 name: <string>
 id: <integer>
 user_id: <integer>
 recent_climate_data: {
 time_date: <string in ISO 8601 format>
 battery_voltage: <float>
 sensor_data: [
 {
 type: <string>
 value: <float>
 unit: <string>
 }
]
 }
 }
}

Error
Response

Sensor doesn’t exist
Code: 400
Body: {
 status: “Error”,
 errors: [“Sensor doesn’t exist”]
}

Missing Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Missing authentication token”]
}

105

Invalid Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Invalid authentication token”]
}

Table 9. Get Sensor Endpoint Design

Name Delete sensor

Descriptio
n

Deletes the sensor that has the specified sensor ID

Url /sensors/{sensor_id}

Method Delete

Header
Parameter
s

Field Type Required Description

Authorization String Yes Authentication token that has
been received from successful
login or registration.

Path
Parameter
s

Field Type Required Description

sensor_id Integer Yes ID of the sensor that will be deleted.

Query
Parameter
s

None

Body
Parameter
s

None

Success
Response

Code: 200
Body: {
 status: “Sensor successfully deleted”
}

Error
Response

Sensor doesn’t exist
Code: 400
Body: {
 status: “Error”,
 errors: [“Sensor doesn’t exist”]
}

Missing Authentication Token

106

Code: 401
Body: {
 status: “Error”,
 errors: [“Missing authentication token”]
}

Invalid Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Invalid authentication token”]
}

Table 10. Delete Sensor Endpoint Design

Name Sensor Data Setting

Descriptio
n

Adds new climate data for the specified sensor.

Url /sensors/{sensor_id}/climate-data

Method Post

Header
Parameter
s

None

Path
Parameter
s

Name Description

sensor_id ID of the sensor that collected the climate data.

Query
Parameter
s

Name Type Required Description

api_key String Yes Api key used
only by the base
station radio
program.

Body
Parameter
s

Name Type Require
d

Description

date String(ISO 8601
format)

Yes Date and time that the
climate data was
recorded at.

climate_data Array Yes Array of objects in the
following format:

107

{
data_type: <string>
measurement: <float>
unit: <string>
}

battery_voltage Float Yes Battery voltage of the
sensor node

Success
Response

Code: 200
Body: {
status: “Sensor data successfully created.”
}

Error
Response

Climate_data isn’t a list
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "climate_data": [
 "Not a valid list."
]
 }
}

Unit field in climate_data isn’t a string
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "climate_data": {
 "0": {
 "unit": [
 "Not a valid string."
]
 }
 }
 }
}

Value field in climate_data isn’t a number
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "climate_data": {
 "0": {
 "value": [
 "Not a valid number."
]
 }

108

 }
 }
}

Type field in climate_data isn’t a string
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "climate_data": {
 "0": {
 "type": [
 "Not a valid string."
]
 }
 }
 }
}

Battery_voltage isn’t a float number
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "battery_voltage": [
 "Not a valid number."
]
 }
}

Incorrect Date
Code: 400
Body: {
 "status": "Error",
 "errors": {
 "date": [
 "Not a valid datetime."
]
 }
}

Sensor Does Not Exist
Code: 400
Body: {
 status: “Error”,
 errors: [“Sensor doesn’t exist”]
}

Invalid or Missing API Key
Code: 401
Body: {

109

 status: “Error”,
 errors: [“Invalid API key”]
}

Table 11. Set Climate Data Endpoint Design

Name Sensor Climate Data Retrieval

Descriptio
n

Gets the climate data for the specified sensor based on the quantity of
recent data requested or a date and time range. By default it will return the
quantity is 1 so the endpoint will always return the most recent climate data
in the subcollection.

Url /sensors/{sensor_id}/climate-data

Method Get

Header
Parameter
s

Field Type Required Description

Authorization String Yes Authentication token that has
been received from successful
login or registration.

Path
Parameter
s

Field Description

sensor_id ID of the sensor that collected the climate data.

Query
Parameter
s

Field Type Require
d

Description

quantity Integer No Quantity of the climate
data objects required,
based on how recently
they were added to the
database.

range_star
t

String(ISO 8601
format)

No Start of the time and date
range.

range_end String(ISO 8601
format)

No End of the time and date
range.

Body
Parameter
s

None

Success
Response

Code: 200
Body: {

110

 status: “Climate data successfully retrieved”
 climate_data: [
 {
 time_date: <string in ISO 8601 format>
 battery_voltage: <float>
 sensor_data: [
 {
 type: <string>
 value: <float>
 unit: <string>
 }
]
 }
]
}

Error
Response

Quantity isn’t an integer
Code: 422
Body: {
 "status": "Error",
 "errors": [
 "Quantity must be an integer"
]
}

Sensor does not Exist
Code: 400
Body: {
 status: “Error”,
 errors: [“Sensor doesn’t exist”]
}

Quantity is invalid
Code: 422
Body: {
 status: “Error”,
 errors: [“Quantity must be below or equal to 50”]
}

Date range from range_start to range_end is invalid
Code: 422
Body: {
 status: “Error”,
 errors: [“Invalid date range”]
}

Missing Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Missing authentication token”]

111

}

Invalid Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Invalid authentication token”]
}

Table 12. Get Climate Data Endpoint Design

Name Sensor Climate Data Deletion

Descriptio
n

Deletes the climate data for the sensor that has the specified sensor ID.

Url /sensors/{sensor_id}/climate-data

Method Delete

Header
Parameter
s

Field Type Required Description

Authorization String Yes Authentication token that has been
received from successful login or
registration.

Path
Parameter
s

Field Description

sensor_id ID of the sensor that collected the climate data.

Query
Parameter
s

None

Body
Parameter
s

None

Success
Response

Code: 200
Body: {
 Status: “Data successfully deleted”
}

Error
Response

Sensor does not exist
Code: 400
Body: {
 status: “Error”,
 errors: [“No climate data for the sensor ID”]
}

112

Missing Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Missing authentication token”]
}

Invalid Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Invalid authentication token”]
}

Table 13. Delete Climate Data Endpoint Design

Name Account Creation

Descriptio
n

Creates the account based on the input email and password and returns the
authentication token.

Url /account

Method Post

Header
Parameter
s

None

Path
Parameter
s

None

Query
Parameter
s

None

Body
Parameter
s

Field Type Required Description

email String Yes Email of the account

password String Yes Password of the account

Success
Response

Code: 200
Body: {
 status: “Account was successfully created”,
 access_token: <string>,
 refresh_token: <string>,
 reset_token: <string>
}

Error Email isn’t a string

113

Response Code: 422
Body: {
 "status": "Error",
 "errors": {
 "email": [
 "Not a valid email address."
]
 }
}

Password isn’t a string
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "password": [
 "Not a valid string."
]
 }
}

Password isn’t between 8 to 40 characters long
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "password": [
 "Length must be between 8 and 40."
]
 }
}

Table 14. Create Account Endpoint Design

Name Account Updating

Descriptio
n

Updates the account based on the optional body parameters email and
password.

Url /account

Method Patch

Header
Parameter
s

Field Type Required Description

Authorizatio
n

String Yes Authentication token that has been
received from successful login or
registration.

Path None

114

Parameter
s

Query
Parameter
s

None

Body
Parameter
s

Field Type Required Description

email String No Email of the account

password String No Password of the account

settings String No Encoded JSON string of the account
settings

Success
Response

Code: 200
Body: {
 status: “Account successfully updated”
}

Error
Response

Email isn’t a string
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "email": [
 "Not a valid email address."
]
 }
}

Password isn’t a string
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "password": [
 "Not a valid string."
]
 }
}

Settings isn’t a string
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "settings": [
 "Not a valid string."
]

115

 }
}

Password isn’t between 8 to 40 characters long
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "password": [
 "Length must be between 8 and 40."
]
 }
}

Account not created
Code: 400
Body: {
 status: “Error”,
 errors: [“The account has not been created”]
}

Missing Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Missing authentication token”]
}

Invalid Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Invalid authentication token”]
}

Table 15. Update Account Endpoint Design

Name Account Details Retrieval

Descriptio
n

Gets the account details.

Url /account

Method Get

Header
Parameter
s

Field Type Required Description

Authorizatio
n

String Yes Authentication token that has been
received from successful login or

116

registration.

Path
Parameter
s

None

Query
Parameter
s

None

Body
Parameter
s

None

Success
Response

Code: 200
Body: {
 Status: ‘Account successfully retrieved’,
 account: {
 id: <integer>,
 email: <string>,
 settings: <string>,
 reset_token: <string>
 }
}

Error
Response

Account not created
Code: 400
Body: {
 status: “Error”,
 errors: [“The account has not been created”]
}

Missing Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Missing authentication token”]
}

Invalid Authentication Token
Code: 401
Body: {
 status: “Error”,
 errors: [“Invalid authentication token”]
}

Table 16. Get Account Endpoint Design

Name Password Reset

Descriptio
n

Changes the users password if the reset key is valid.

117

Url /account/actions/change-password

Method Get

Header
Parameter
s

None

Path
Parameter
s

None

Query
Parameter
s

None

Body
Parameter
s

Field Type Required Description

reset_token String Yes Reset token obtained on login.

password String Yes New password to replace the
existing password.

Success
Response

Code: 200
Body: {
 status: “Successfully reset password”,
 new_reset_token: <string>
}

Error
Response

Password isn’t a string
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "password": [
 "Not a valid string."
]
 }
}

Password isn’t between 8 to 40 characters long
Code: 422
Body: {
 "status": "Error",
 "errors": {
 "password": [
 "Length must be between 8 and 40."
]
 }
}

118

Account Not Created
Code: 400
Body: {
 status: “Error”,
 errors: [“The account has not been created”]
}

Invalid Reset Token
Code: 400
Body: {
 status: “Error”,
 errors: [“Invalid password reset token”]
}

Table 17. Reset Password Endpoint Design

Name Next Available Sensor ID

Descriptio
n

Returns the next unused sensor ID based on the currently used sensor IDs

Url /api/sensors/actions/next-available-sensor-id

Method Get

Header
Parameter
s

None

Path
Parameter
s

None

Query
Parameter
s

Field Type Required Description

api_key String Yes Api key used only by the
base station radio
program.

Body
Parameter
s

None

Success
Response

Code: 200
Body: {
 status: “Next available ID found”,
 ID: <integer>
}

Error
Response

Invalid or Missing API Key
Code: 401

119

Body: {
 status: “Error”,
 errors: [“Invalid API key”]
}

Table 18. Get Next Available Node ID Endpoint Design

Name Get Account Settings

Descriptio
n

Returns the account settings

Url /api/base-station-settings

Method Get

Header
Parameter
s

None

Path
Parameter
s

None

Query
Parameter
s

Field Type Required Description

api_key String Yes Api key used
only by the base
station radio
program.

Body
Parameter
s

None

Success
Response

Code: 200
Body: {
 status: “Next available ID found”,
 settings: <string>
}

Error
Response

Invalid or Missing API Key
Code: 401
Body: {
 status: “Error”,
 errors: [“Invalid API key”]
}

Account Not Created
Code: 500
Body: {

120

 status: “Error”,
 errors: [“The account has not been created”]
}

Table 19. Get Account Settings Endpoint Design

121

11.6 Appendix F: Database Data Types

Field Reason for type and size

id The integer type was selected for the primary key, as only one account is
required though this can be incremented if required.

password The password will be hashed so a long string limit of 120 characters is
required while the actual password will only be 8 to 40 characters long.

email A 120-character string field was selected to allow for longer email
addresses.

settings The settings are stored as a JSON string so an unlimited length text field is
required as the string will be encoded and decoded on the API and front-
end.

reset_token A 20-character string field was selected as the user will need to write it
down in a safe location thus it shouldn’t be too long, but long enough to
secure from being guessed.

Table 1. User table data type justification

Field Reason for type and size

id The integer type was selected for the primary key as it can be incremented
when a new sensor is created.

user_id The Integer type was chosen for the foreign key to link the sensor with the
user according the user’s primary key.

name A 40-character string field was selected as the sensor names will not be too
long as they won’t need to be too descriptive, but long enough to contain
the name of a room or location.

Table 2. Sensor table data type justification

Field Reason for type and size

id The integer type was selected for primary key as it can be incremented
when a new climate data row is created. This ensures that up to 6 months
of climate data can be stored and uniquely identified.

sensor_id The integer type was selected as the foreign key to link the climate data
with the sensor according the sensor’s primary key.

battery_voltag
e

The real field was selected as the voltage is a float with 2 decimal points.

date The date field was selected as the date and time of the sensor recording
must be stored to link the climate and sensor data to the correct time of
recording.

Table 3. Climate data table data type justification

122

Field Reason for type and size

id The integer type was selected for the primary key as it can be
incremented when a new sensor data row is created.

climate_id The integer foreign key was selected to link the sensor data with the
climate data according to the climate data’s primary key.

value The float field was selected as the sensor measurements will always be
numbers with decimal points regardless of the sensor type.

type A 40-character string describing the type of data collected by the sensor
was selected as the product research indicated that all measurement type
names are less than 40 characters. This will lower the storage required in
the database as many sensor data rows are required.

unit A 20-character string field was used as it will be used in formatting and
describing the data recorded by the sensors, and the product research
showed that the measurement units were all below 20 characters.

Table 4. Sensor data table data type justification

Field Reason for type and size

id The integer type was selected for the primary key as it can be
incremented when a new revoked JWT token row is added.

jti A 120-character string was selected to store the JWT token as all tokens
will be shorter than the field limit.

Table 5. Revoked JWT tokens table data type justification

123

11.7 Appendix G: UI Designs

Figure 1. Wireframe Stylesheet

Figure 2. Wireframe Desktop Home Page

124

Figure 3. Wireframe Desktop Registration Page

Figure 4. Wireframe Desktop Login Page

125

Figure 5. Wireframe Desktop Change Password Page

Figure 6. Wireframe Desktop Dashboard Page

126

Figure 7. Wireframe Desktop Settings Page

Figure 8. Wireframe Mobile Home Page

127

Figure 9. Wireframe Mobile Registration Page

Figure 10. Wireframe Mobile Login Page

128

Figure 11. Wireframe Mobile Change Password Page

Figure 12. Wireframe Mobile Dashboard Node List Page

129

Figure 13. Wireframe Mobile Dashboard Node Page

130

Figure 14. Wireframe Mobile Settings Category List Page

Figure 15. Wireframe Mobile Settings Category Page

131

Figure 16. Final Stylesheet

Figure 17. Final Desktop Home Page

132

Figure 18. Final Desktop Login Page

Figure 19. Final Desktop Registration Page

133

Figure 20. Final Desktop Change Password Page

Figure 21. Final Desktop Dashboard Page

134

Figure 22. Final Desktop Settings Page

Figure 23. Final Mobile Home Page

135

Figure 24. Final Mobile Menu

Figure 25. Final Mobile Login Page

136

Figure 26. Final Mobile Registration Page

Figure 27. Final Mobile Change Password Page

137

Figure 28. Final Mobile Sensor Node List Page

138

Figure 29 .Final Mobile Sensor Node Page

139

Figure 30. Final Mobile Category List Page

140

Figure 31. Final Mobile Settings Category Page

141

11.8 Appendix H: Battery Life Calculation Spreadsheet

142

11.9 Appendix I: Test Plan and Results

Name Description Success

Start up node that
hasn’t been
assigned a node ID

Whether a node will start up and attempt initialisation with the base
station if it hasn’t been able to retrieve a stored node ID from memory

Yes

Start up node that
has been assigned
a node ID

Whether a node will start up and attempt initialisation with the base
station if it has been able to retrieve a stored node ID from memory.

Yes

Send climate data Whether the node sends valid climate data after sleeping for a time
period received during initialisation from the base station

Yes

Initialisation of
node

Whether the node sends the initialisation request and successfully
receives the initialisation data from the base station after the node has
been powered up.

Yes

Reinitialisation of
node

Whether the node will receive the reinitialisation request after the base
station reboots and the node has sent climate data to the base station.

Yes

Records
temperature

Whether the node can record valid temperature data from the
surrounding environment as specified in the functional requirements.

Yes

Records humidity Whether the node can record valid humidity data from the surrounding
environment as specified in the functional requirements.

Yes

Battery Power Whether the node is battery powered. Yes

Usb power Whether the node is powered by usb. Yes

Battery charging Whether the node’s battery can be charged up instead of being
replaced.

Yes

1m Whether the node can send and receive packets with the base station at
a distance of 1 metre

Yes

5m Whether the node can send and receive packets with the base station
at a distance of 5 metres

Yes

10m Whether the node can send and receive packets with the base station at
a distance of 10 metres

Yes

20m Whether the node can send and receive packets with the base station at
a distance of 20 metres

Yes

25m Whether the node can send and receive packets with the base station at
a distance of 25 metres

Yes

143

50m Whether the node can send and receive packets with the base station at
a distance of 50 metres

Yes

75m Whether the node can send and receive packets with the base station at
a distance of 75 metres

No

100m Whether the node can send and receive packets with the base station at
a distance of 100 metres

No

Wall penetration Whether the node can send and receive packets with the base station
through a single wall.

Yes

Max range Max range of node communication 56.5m

Table 1. Sensor node test plan

Name Description Success

Create a
sensor object

Whether the base station creates a sensor object to represent connected
sensor nodes within the base station.

Yes

Convert
string of ascii
to unicode

Whether the base station can convert a list of ascii characters into a string of
unicode characters.

Yes

Convert
sensor data
type

Whether the base station can retrieve the full name of a sensor data type from
a sensor data type character.

Yes

Get
measuremen
t unit from
sensor data
type

Whether the base station can retrieve the measurement unit from a full name
of a sensor data type.

Yes

Process
radio packet

Whether the base station can process a radio packet from a sensor node. Yes

Process
radio packet
control
section

Whether the base station can process the string control section of a packet into
a dictionary representing the keys and values from the control section of the
packet.

Yes

Process
climate data
packet

Whether the base station can process a climate data packet from a sensor
node and successfully send the climate data to the API.

Yes

Process
initialisation
packet

Whether the base station can process an initialisation packet and send the
node ID and time period interval back to the node, and if it creates a node for
that node ID within the database.

Yes

144

Generate
milliseconds
for a time
period

Whether the base station can calculate the number of milliseconds to the next
send interval for a node based on it’s time period.

Yes

Get next
available
sensor ID

Whether the base station can retrieve the next available sensor ID based on
the used sensor node IDs within the database.

Yes

Filter active
sensors

Whether the base station can filter active sensors that have communicated
recently with the base station.

Yes

Remove
inactive
sensors

Whether the base station removes inactive sensors that have not recently
communicated with the base station.

Yes

Send climate
data to the
API

Whether the base station sends climate data to API after the base station
receives climate data from a node.

Yes

Reinitialise
node

Whether the base station re-initialises a node after receiving climate data from
a node that is not being currently tracked by the base station.

Yes

Connect to
mobile
network

Whether the base station connects to the mobile WiFi network when the user
specified WiFi network is not available.

Yes

Connect to
user network

Whether the base station connects to the user specified WiFi network. Yes

Connect to
user network
when mobile
network is
available

Whether the base station connects to the user specified WiFi network when
the mobile WiFi network is also available.

Yes

Table 2. Base station test plan

Name Description Success

Success Whether the API can achieve a successful login request with valid post data Yes

Missing json
data

Whether the API produces an error response when no post data is sent Yes

Missing email Whether the API produces an error response when the email field is missing
from the post data

Yes

Missing
password

Whether the API produces an error response when the password field is
missing from the post data

Yes

Email isn’t a
string

Whether the API produces ates an error response when the email isn't a string Yes

Password
isn’t a string

Whether the API produces an error response when the password isn't a string Yes

Incorrect
email and

Whether the API produces an error response when the email or password don't
match the stored use credentials

Yes

145

password

Table 3. Login endpoint test plan

Name Description Success

Success Whether the API can achieve a successful access token logout request with
valid post data.

Yes

Incorrect
access token

Whether the API produces an error response when the access token is not
valid.

Yes

Missing Auth Whether the API produces an error response when the access token is
missing.

Yes

Table 4. Access token logout endpoint test plan

Name Description Success

Success Whether the API can achieve a successful refresh token logout request with
valid post data.

Yes

Incorrect
refresh token

Whether the API produces an error response when the access token is not
valid.

Yes

Missing Auth Whether the API produces an error response when the access token is
missing.

Yes

Table 5. Refresh token logout endpoint test plan

Name Description Success

Success Whether the API can achieve a successful access token refresh request with
valid post data.

Yes

Incorrect
refresh token

Whether the API produces an error response when the refresh token is not
valid.

Yes

Table 6. Refresh token endpoint test plan

Name Description Success

Success Whether the API can achieve a successful sensor creation request with valid
post data.

Yes

Missing json
data

Whether the API produces an error response when no post data is sent Yes

Missing name Whether the API produces an error response when the name field is missing
from the post data.

Yes

Missing
sensor_id

Whether the API produces an error response when the sensor_id field is
missing from the post data.

Yes

Missing
user_id

Whether the API produces an error response when the user_id field is missing
from the post data.

Yes

Name isn’t
string

Whether the API produces an error response when the name isn't a string. Yes

146

Name is too
long

Whether the API produces an error response when the name is longer than 40
characters.

Yes

sensor_id
isn't integer

Whether the API produces an error response when the sensor_id isn't an
integer.

Yes

user_id isn’t
integer

Whether the API produces an error response when the user_id isn't a string. Yes

Duplicate ID Whether the API produces an error response when a sensor node within the
database already has the same ID as the ID in the post data.

Yes

Invalid API
key

Whether the API produces an error response when the api_key querystring
value is invalid.

Yes

Missing API
key

Whether the API produces an error response when the api_key querystring is
missing from the request.

Yes

Table 7. Create sensor endpoint test plan

Name Description Success

Success no sensors Whether the API can achieve a successful sensor retrieval request
when no sensors are stored within the database.

Yes

Success multiple
sensors with no climate
data

Whether the API can achieve a successful sensor retrieval request
when sensors are stored within the database but they haven’t got any
stored climate data.

Yes

Success multiple
sensors with climate
data

Whether the API can achieve a successful sensor retrieval request
when sensors are stored within the database and they have stored
climate data.

Yes

Missing authentication
token

Whether the API produces an error response when the access token
is not valid.

Yes

Invalid authentication
token

Whether the API produces an error response when the access token
is missing.

Yes

Table 8. Get sensors endpoint test plan

Name Description Success

Success no sensors Whether the API can achieve a successful sensors deletion request
when no sensors are stored within the database.

Yes

Success sensors Whether the API can achieve a successful sensors deletion request
when sensors are stored within the database.

Yes

Missing authentication
token

Whether the API produces an error response when the access token
is not valid.

Yes

Invalid authentication
token

Whether the API produces an error response when the access token
is missing.

Yes

Table 9. Delete sensors endpoint test plan

Name Description Success

147

Success Whether the API can achieve a successful sensor update request with
valid post data.

Yes

Missing json data Whether the API produces an error response when no post data is
sent

Yes

Name isn’t string Whether the API produces an error response when the name field is
missing from the post data.

Yes

Name is too long Whether the API produces an error response when the name is longer
than 40 characters.

Yes

sensor_id isn’t integer Whether the API produces an error response when the sensor_id isn't
an integer.

Yes

Sensor doesn’t exist Whether the API produces an error response when a sensor with that
ID doesn’t exist within the database.

Yes

Missing authentication
token

Whether the API produces an error response when the access token
is not valid.

Yes

Invalid authentication
token

Whether the API produces an error response when the access token
is missing.

Yes

Table 10. Update sensor endpoint test plan

Name Description Success

Success Whether the API can achieve a successful sensor retrieval request. Yes

Sensor doesn’t exist Whether the API produces an error response when a sensor with that ID
doesn’t exist within the database.

Yes

Missing
authentication token

Whether the API produces an error response when the access token is
not valid.

Yes

Invalid authentication
token

Whether the API produces an error response when the access token is
missing.

Yes

Table 11. Get sensor endpoint test plan

Name Description Success

Success Whether the API can achieve a successful sensor deletion request. Yes

Sensor doesn’t exist Whether the API produces an error response when a sensor with that ID
doesn’t exist within the database.

Yes

Missing
authentication token

Whether the API produces an error response when the access token is
not valid.

Yes

Invalid authentication
token

Whether the API produces an error response when the access token is
missing.

Yes

Table 12. Delete sensor endpoint test plan

Name Description Success

Success Whether the API can achieve a successful climate data creation request
with valid post data.

Yes

148

Missing json data Whether the API produces an error response when no post data is sent. Yes

Sensor doesn’t exist Whether the API produces an error response when a sensor with that ID
doesn’t exist within the database.

Yes

Missing climate_data Whether the API produces an error response when the climate_data
field is missing from the post data.

Yes

Missing unit Whether the API produces an error response when the unit field is
missing from the post data.

Yes

Missing value Whether the API produces an error response when the value field is
missing from the post data.

Yes

Missing type Whether the API produces an error response when the type field is
missing from the post data.

Yes

Missing
battery_voltage

Whether the API produces an error response when the battery_voltage
field is missing from the post data.

Yes

climate_data isn’t a
list

Whether the API produces an error response when the climate_data isn't
a list.

Yes

unit isn’t a string Whether the API produces an error response when the unit isn't a list. Yes

value isn’t a string Whether the API produces an error response when the type isn't a list. Yes

type isn’t a string Whether the API produces an error response when the value isn't a list. Yes

battery_voltage isn’t
a string

Whether the API produces an error response when the battery_voltage
isn't a list.

Yes

Incorrect date Whether the API produces an error response when the date field is not a
valid date.

Yes

Invalid API key Whether the API produces an error response when the api_key
querystring value is invalid.

Yes

Missing API key Whether the API produces an error response when the api_key
querystring is missing from the request.

Yes

Table 13. Create climate data endpoint test plan

Name Description Success

Success default Whether the API can achieve a successful climate data retrieval request
when no quantity or date range is provided.

Yes

Success quantity 20 Whether the API can achieve a successful climate data retrieval request
when a quantity of 20 is provided.

Yes

Success range 1 day Whether the API can achieve a successful climate data retrieval request
when a date range of 1 day is provided.

Yes

Success range 2 day Whether the API can achieve a successful climate data retrieval request
when a date range of 2 days is provided.

Yes

Success range 7
days

Whether the API can achieve a successful climate data retrieval request
when a date range of 7 days is provided.

Yes

Success range 1 Whether the API can achieve a successful climate data retrieval request Yes

149

month when a date range of 1 month is provided.

Quantity isn’t an
integer

Whether the API produces an error response when the quantity isn’t an
integer.

Yes

Quantity is invalid Whether the API produces an error response when the quantity is
outside of the valid 1 to 50 quantity range.

Yes

Sensor doesn’t exist Whether the API produces an error response when a sensor with that ID
doesn’t exist within the database.

Yes

Date range is invalid Whether the API produces an error response when the date range isn’t
a valid range where the range_start is after the range_end or either of
the range values aren’t valid dates.

Yes

Missing
authentication token

Whether the API produces an error response when the access token is
not valid.

Yes

Invalid
authentication token

Whether the API produces an error response when the access token is
missing.

Yes

Table 14. Get climate data endpoint test plan

Name Description Success

Success Whether the API can achieve a successful climate data deletion
request.

Yes

Sensor doesn’t exist Whether the API produces an error response when a sensor with that ID
doesn’t exist within the database.

Yes

Missing
authentication token

Whether the API produces an error response when the access token is
not valid.

Yes

Invalid authentication
token

Whether the API produces an error response when the access token is
missing.

Yes

Table 15. Delete climate data endpoint test plan

Name Description Success

Success Whether the API can achieve a successful account creation request. Yes

Missing json data Whether the API produces an error response when no post data is sent. Yes

Missing email Whether the API produces an error response when the email field is
missing from the post data.

Yes

Missing password Whether the API produces an error response when the password field is
missing from the post data.

Yes

Email isn’t a string Whether the API produces an error response when the email isn't a valid
email address.

Yes

Password isn’t a
string

Whether the API produces an error response when the password isn’t a
string.

Yes

Password isn’t Whether the API produces an error response when the password isn’t Yes

150

between 8 to 40
characters long

between 8 to 40 characters long.

Table 16. Create account endpoint test plan

Name Description Success

Success Whether the API can achieve a successful account update request. Yes

Email isn’t a string Whether the API produces an error response when the email isn't a valid
email address.

Yes

Password isn’t a
string

Whether the API produces an error response when the password isn't a
string.

Yes

Password isn’t
between 8 to 40
characters long

Whether the API produces an error response when the password isn’t
between 8 to 40 characters long.

Yes

Settings isn’t a
string

Whether the API produces an error response when the settings isn't a
string.

Yes

Account not created Whether the API produces an error response when the account has not
been created.

Yes

Missing
Authentication
Token

Whether the API produces an error response when the access token is
not valid.

Yes

Invalid
Authentication
Token

Whether the API produces an error response when the access token is
missing.

Yes

Table 17. Update account endpoint test plan

Name Description Success

Success Whether the API can achieve a successful account retrieval request. Yes

Account not created Whether the API produces an error response when the account has not
been created.

Yes

Missing
Authentication
Token

Whether the API produces an error response when the access token is
not valid.

Yes

Invalid
Authentication
Token

Whether the API produces an error response when the access token is
missing.

Yes

Table 18. Get account endpoint test plan

Name Description Success

Success Whether the API can achieve a successful password change request. Yes

Missing JSON data Whether the API produces an error response when no post data is sent. Yes

Account not
created

Whether the API produces an error response when the account has not
been created.

Yes

151

Missing password Whether the API produces an error response when the password field is
missing from the post data.

Yes

Missing
reset_token

Whether the API produces an error response when the reset_token field
is missing from the post data.

Yes

Wrong reset_token
length

Whether the API produces an error response when the reset_token field
is not 20 characters long.

Yes

Password isn’t a
string

Whether the API produces an error response when the password isn't a
string.

Yes

Password isn’t
between 8 to 40
characters long

Whether the API produces an error response when the password isn’t
between 8 to 40 characters long.

Yes

Invalid reset token Whether the API produces an error response when the reset_token does
not match the reset token stored within the database.

Yes

Table 19. Change password endpoint test plan

Name Description Success

Success no sensors Whether the API can achieve a successful next available sensor ID
request when no sensors have been stored in the database.

Yes

Success with
sensors

Whether the API can achieve a successful next available sensor ID
request when multiple sensors have been stored in the database.

Yes

Invalid API key Whether the API produces an error response when the api_key
querystring value is invalid.

Yes

Missing API key Whether the API produces an error response when the api_key
querystring is missing from the request.

Yes

Table 20. Get next available sensor ID endpoint test plan

Name Description Success

Success Whether the API will periodically remove climate data that is older than 6
months from the database.

Yes

Table 21. Old climate data removal test plan

Name Description Success

End point doesn’t
exist

Test that an error status is always given for any endpoint url that hasn’t
been defined in the API.

Yes

Table 22. Nonexistent endpoint test plan

Name Description Success

Serve HTML Whether the web-server will serve the HTML page of the website when a
request to the root of the web-server’s IP address is made.

Yes

Serve JavaScript Whether the web-server will serve a JavaScript file used by the website
when the JavaScript file’s name and folder

Yes

Table 21. Web-server unit test plan

152

Name Description Success

Create Whether an instance of UserModel is created when valid data is input. Yes

save Whether an instance of UserModel is saved into the database using the
save class method.

Yes

delete Whether an instance of UserModel is deleted from the database using the
delete class method.

Yes

find_by_email Whether an instance of UserModel is retrieved from the database by
inputting an email that matches the email address of a user within the
database.

Yes

return_first Whether the first instance of UserModel is retrieved from the database by
using the return_first class method.

Yes

verify_hash

Whether an unhashed password can be correctly compared against the
hashed password of a user.

Yes

Table 23. Database UserModel test plan

Name Description Success

Create Whether an instance of RevokedTokenModel is created when valid data is
input.

Yes

save Whether an instance of RevokedTokenModel is saved into the database
using the save class method.

Yes

delete Whether an instance of RevokedTokenModel is deleted from the database
using the delete class method.

Yes

is_jti_blacklisted Whether an input JWT token already exists within the database. Yes

Table 24. Database RevokedTokenModel test plan

Name Description Success

Create Whether an instance of SensorModel is created when valid data is input. Yes

save Whether an instance of SensorModel is saved into the database using the
save class method.

Yes

delete Whether an instance of SensorModel is deleted from the database using the
delete class method.

Yes

delete_all Whether all instances of SensorModel are deleted from the database using
the delete_all class method.

Yes

Table 25. Database SensorModel test plan

Name Description Success

Create Whether an instance of ClimateModel is created when valid data is input. Yes

interval Whether the ID of an instance of ClimateModel is reduced down to the
input integer.

Yes

save Whether an instance of ClimateModel is saved into the database using the Yes

153

save class method.

delete Whether an instance of ClimateModel is deleted from the database using
the delete class method.

Yes

Table 26. Database ClimateModel test plan

Name Description Success

Create Whether an instance of SensorDataModel is created when valid data is
input.

Yes

save Whether an instance of SensorDataModel is saved into the database using
the save class method.

Yes

delete Whether an instance of SensorDataModel is deleted from the database
using the delete class method.

Yes

Table 27. Database SensorDataModel test plan

Name Description Success

Header Slot Whether the component renders content input into the header slot. Yes

Content Slot Whether the component renders content input into the content slot. Yes

Table 28. Website MainPanel component test plan

Name Description Success

Header Slot Whether the component renders content input into the header slot. Yes

Content Slot Whether the component renders content input into the content slot. Yes

Table 29. Website SidePanel component test plan

Name Description Success

Title prop Whether the component renders the correct title text input via the title prop. Yes

Errors prop Whether the component renders the error text input via the errors prop. Yes

Table 30. Website ErrorList component test plan

Name Description Success

hierarchyLevel Whether the component renders with the correct styling based on the
hierarchyLevel input via the hierarchyLevel prop..

Yes

text Whether the component renders the text input via the text prop. Yes

isIcon Whether the component renders an icon if the isIcon prop is input. Yes

Table 31. Website vButton component test plan

Name Description Success

chartData Whether the component renders the correct chart data input via the chartData
prop.

Yes

options Whether the component renders the correct options input via the options Yes

154

prop.

Table 32. Website Chart component test plan

Name Description Success

loggedIn
visibility

Whether the component renders the content that requires the user to be
logged in once the loggedIn prop is input.

Yes

Mobile only
links

Whether the component renders the content that requires the user to be on a
mobile device once the mobile prop is input.

Yes

Mobile menu
toggle

Whether the component correctly toggles the mobile menu once the mobile
menu button is clicked.

Yes

Table 33. Website Nav component test plan

Name Description Success

recentClimateData Whether the component renders the climate data input via the
recentClimateData prop.

Yes

temperatureUnit Whether the component renders the temperature data in the correct
measurement unit that was input via the temperatureUnit prop.

Yes

Table 34. Website RecentClimateData component test plan

Name Description Success

No email
error

Whether the component renders the no email error when no email is input
into the form.

Yes

No password
error

Whether the component renders the no password error when no password is
input into the form.

Yes

Invalid
password
error

Whether the component renders the invalid password error when the login
API request fails once the form is submitted.

Yes

Success Whether the component renders the success status when the login is
successful.

Yes

Table 35. Website LoginForm component test plan

Name Description Success

No email error Whether the component renders the no email error when no email is input
into the form.

Yes

No password
error

Whether the component renders the no password error when no
password is input into the form.

Yes

Mismatch
password error

Whether the component renders the no mismatch password error when
the password doesn’t match the confirm password value.

Yes

Success Whether the component renders the success status when the registration
is successful.

Yes

Table 35. Website RegisterForm component test plan

155

Name Description Success

No reset token
error

Whether the component renders the no email error when no email is
input into the form.

Yes

No password
error

Whether the component renders the no password error when no
password is input into the form.

Yes

Mismatch
password error

Whether the component renders the no mismatch password error when
the password doesn’t match the confirm password value.

Yes

Success input
token

Whether the component renders the success status when the password
token is manually input and the password reset is successful.

Yes

Success loaded
token

Whether the component renders the success status when the password
token is automatically input and the password reset is successful.

Yes

Table 36. Website PasswordResetForm component test plan

Name Description Success

loggedIn visibility Whether the component renders the content that requires the user to be
logged in once the loggedIn prop is input.

Yes

toggleMenu Whether the component correctly toggles the mobile menu once the
mobile menu button is clicked.

Yes

Table 37. Website MobileMenu component test plan

Name Description Success

getStoredAccessToken Whether the function correctly retrieves the JWT access token
from the local storage of the user’s browser.

Yes

getStoredRefreshToken Whether the function correctly retrieves the JWT refresh token
from the local storage of the user’s browser.

Yes

setStoredAccessToken Whether the function correctly stores the JWT access token into
the local storage of the user’s browser.

Yes

setStoredRefreshToken Whether the function correctly stores the JWT refresh token into
the local storage of the user’s browser.

Yes

Table 38. Website Storage component test plan

Name Description Success

setMobile Whether the function sets the mobile value in the vuex state. Yes

setMobileMenu Whether the function sets the mobile menu value in the vuex state. Yes

setUser Whether the function sets the user value in the vuex state. Yes

Table 39. Website Store component test plan

Name Description Success

capitalise Whether the function capitalises the first letter of the string. Yes

156

convertTemperature Whether the function converts the temperature value to the
correct value depending on the input measurement unit.

Yes

formatClimateData Whether the function formats the input climate data value into
a correctly formatted string.

Yes

processErrors Whether the function returns correctly formatted errors when
raw errors are input.

Yes

getBatteryStatusFromVoltage Whether the function returns the correct battery status text
when the battery voltage is input.

Yes

Table 40. Website Helpers component test plan

Name Description Success

Snapshot Whether the component’s rendered HTML matches the stored
snapshot.

Yes

Table 41. Website Home view test plan

Name Description Success

Snapshot Whether the component’s rendered HTML matches the stored
snapshot.

Yes

No sensors Whether the component renders the correct no sensor text when no
sensors are stored.

Yes

Multiple sensors Whether the component renders the correct no sensor text when no
sensors are stored.

Yes

Change active
sensor

Whether the component correctly changes the active sensor when
sensor active buttons are clicked.

Yes

Refresh sensors Whether the component refreshes the sensors once the refresh button
is clicked.

Yes

Delete sensor Whether the component sends a sensor deletion request to the API
once a delete sensor button is clicked.

Yes

Delete climate data Whether the component sends a sensor climate data deletion request to
the API once a delete sensor climate data button is clicked.

Yes

Rename sensor Whether the component sends a sensor rename request to the API
once a sensor name text box value is changed.

Yes

Change historical
data period

Whether the component Yes

Table 42. Website Dashboard view test plan

Name Description Success

Snapshot Whether the component’s rendered HTML matches the stored
snapshot.

Yes

Table 43. Website Login view test plan

Name Description Success

157

Snapshot Whether the component’s rendered HTML matches the stored
snapshot.

Yes

Form shown Whether the component renders the registration form is the user is not
registered.

Yes

Instructions shown Whether the component renders the registration success information if
the user is registered.

Yes

Table 44. Website Register view test plan

Name Description Success

Snapshot Whether the component’s rendered HTML matches the stored
snapshot.

Yes

Table 45. Website Forgot Password view test plan

Name Description Success

Snapshot Whether the component’s rendered HTML matches the stored
snapshot.

Yes

Change category Whether the component changes the active category once a category
selection button is clicked.

Yes

Change
temperature unit

Whether the component changes the active temperature unit once a
unit radio input is selected.

Yes

Reset token Whether the component renders the user’s password reset token. Yes

Change wifi
settings

Whether the component changes the wifi settings once the save
settings button is clicked.

Yes

Change
measurement
interval

Whether the component changes the active measurement interval once
a dropdown option is selected.

Yes

Table 46. Website Settings view test plan

Name Description Success

Snapshot Whether the component’s rendered HTML matches the stored
snapshot.

Yes

Table 47. Website NotFound view test plan

Name Description Success

Access of
website on
base station
IP address

Whether the website is accessible from a static IP address. Yes

Desktop
access

Whether the website is accessible and usable on desktop and laptop devices. Yes

158

Mobile
access

Whether the website is accessible and usable on mobile and tablet devices. Yes

Load login
page

Whether the website loads the login page once the login url is visited. Yes

Load register
page

Whether the website loads the register page once the register url is visited. Yes

Load home
page

Whether the website loads the home page once the home url is visited. Yes

Load reset
password
page

Whether the website loads the reset password page once the reset password
url is visited.

Yes

Load
dashboard
page

Whether the website loads the dashboard page once the dashboard url is
visited.

Yes

Load settings
page

Whether the website loads the settings page once the settings url is visited. Yes

Mobile menu Whether the mobile menu is visible and correctly toggles visibility on mobile
devices.

Yes

Logout Whether the user is logged out once the logout button is clicked Yes

Table 48. End-to-end website access test plan

Name Description Success

Login Whether the website allows users to login and authenticate their access. Yes

Login error Whether the website shows input errors when invalid data is input into the login
form on the login page.

Yes

Table 49. End-to-end website login page test plan

Name Description Success

Forgot
password

Whether the website allows users to reset or change the password of the
account.

Yes

Forgot
password
error

Whether the website shows input errors when invalid data is input into the
forgot password form on the forgot password page.

Yes

Table 50. End-to-end website forgot password page test plan

159

Name Description Success

Register Whether the website allows users to register an account. Yes

Register
error

Whether the website shows input errors when invalid data is input into the
register form on the register page.

Yes

Table 51. End-to-end website register page test plan

Name Description Success

Name and ID Whether the website’s node list shows each node’s name and ID. Yes

Climate data
deletion

Whether the website’s node list allows for the deletion of a node’s climate data. Yes

Sensor
deletion

Whether the website’s node list allows for the deletion of a node. Yes

Renaming Whether the website’s node list allows for the renaming of each node’s name
based upon user input.

Yes

Battery
status

Whether the website’s node list shows each node’s battery status. Yes

Table 52. End-to-end website node list test plan

Name Description Success

Battery Whether the website shows a line chart of the selected node’s battery voltage
over a user selected time period.

Yes

Climate data
chart

Whether the website shows a line chart for each type of climate data collected
by the selected node’s over a user selected time period.

Yes

Table 53. End-to-end website historical data chart test plan

Name Description Success

Recent
climate data
list

Whether the website shows the most recent climate data collected by the
selected node.

Yes

Table 54. End-to-end website recent climate data list test plan

Name Description Success

Celsius Whether the website can show the sensor temperature data in Celsius values. Yes

160

Farenheit Whether the website can show the sensor temperature data in fahrenheit
values.

Yes

Change unit Whether the website changes the active temperature unit once a unit radio
input is selected.

Yes

Change
settings
category

Whether the website changes the active settings category once a category
selection button is clicked.

Yes

Change base
station wifi
settings

Whether the website changes the wifi settings once the save settings button is
clicked.

Yes

Change
measurement
interval

Whether the website changes the active measurement interval once a
dropdown option is selected.

Yes

Table 55. End-to-end website settings test plan

161

11.10 Appendix J: Questionnaire Design

162

163

164

165

166

167

168

169

170

171

172

173

174

11.11 Appendix K: Questionnaire Responses

175

176

177

178

179

180

181

182

